大学高数下二重积分的计算.ppt
《大学高数下二重积分的计算.ppt》由会员分享,可在线阅读,更多相关《大学高数下二重积分的计算.ppt(61页珍藏版)》请在三一办公上搜索。
1、第二节 二重积分的计算,一、利用直角坐标系计算二重积分,三、利用极坐标系计算二重积分,二、利用积分域和被积函数的对称性 计算二重积分,先将二重积分化为二次积分,然后先后计算两次定积分求得二重积分的值.,如果积分区域 D 可表示为:,其中函数、在区间 上连续.,一、利用直角坐标系计算二重积分1、x型区域,则 D 称为 x型 区域.,应用计算“平行截面面积为已知的立体求体积”的方法,得,如果积分区域 D 可表示为:,其中函数、在区间 上连续.,2、y型区域,则 D 称为 y型 区域.,x型区域的特点:穿过区域且平行于y轴的直线与区域边界相交不多于两个交点.,y型区域的特点:穿过区域且平行于x轴的直
2、线与区域边界相交不多于两个交点.,1)如果积分区域 D 可表示为 x型 区域又可表示为 y型 区域,且 f(x,y)在D 上连续,则有:,3、其他情形,采用哪一种次序积分就取决于被积函数的结构.,2)如果积分区域 D 不是 x型 区域也不是 y型 区域,可用平行坐标轴的直线段分割,把D 分割为若干个两类标准区域,在每个标准区域上计算二重积分,再根据重积分对区域可加性,在各个标准区域上的积分之和就是D 上的二重积分.,若区域如图,,在分割后的三个区域上分别使用积分公式,则必须分割.,例1,解,求曲线的交点:,画出草图并将区域写成不等式形式:,计算:,计算二重积分的几点说明:,1)化二重积分为二次
3、积分的关键是:确定二次积分的上、下限,而二次积分中的上、下限又是由区域 D 的几何形状确定的,因此计算二重积分应先画出积分区域 D 的图形.,2)第一次积分的上、下限是函数或常数,而第二次积分中的上、下限一定是常数,且下限要小于上限.,3)积分次序选择的原则是两次积分都能够积出来,且区域的划分要尽量地简单.,解,如图,解,积分区域如图,解,积分区域如图,解,解,例11,解,先去掉绝对值符号,如图,二、利用积分域和被积函数的对称性计算二重积分,A,三、利用极坐标系计算二重积分,二重积分化为二次积分的公式(),1、极点O在D的外部,区域特征如图,区域特征如图,二重积分化为二次积分的公式(),区域特征如图,2、极点O在D的边界上,极坐标系下区域的面积,二重积分化为二次积分的公式(),区域特征如图,3、极点O在D的内部,法二:,积分区域关于 x 轴对称,解,解,解,解,解,解,二重积分在直角坐标下的计算公式,(在积分中要正确选择积分次序),四、小结,y型,x型,(在积分中注意使用对称性),二重积分在极坐标下的计算公式,(在积分中注意使用对称性),思考题,思考题解答,思考题,思考题解答,练 习 题,练习题答案,练 习 题,练习题答案,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 高数下 二重积分 计算
链接地址:https://www.31ppt.com/p-6155526.html