高等数学考前复习.ppt
《高等数学考前复习.ppt》由会员分享,可在线阅读,更多相关《高等数学考前复习.ppt(95页珍藏版)》请在三一办公上搜索。
1、高等数学期末复习,重庆广播电视大学巴南分校 徐祖平 电话:,考试说明,本课程的考核形式为形成性考核和期末考试相结合的方式。考核成绩由形成性考核作业成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。其中形成性考核作业成绩占考核成绩的20%,期末考试成绩占考核成绩的80%。期末考试采用闭卷笔试形式,卷面满分为100分。,考核内容和考核要求,考核内容 一元函数微分学、一元函数积分学、无穷级数和常微分方程四个部分,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、无穷级数、常微分方程等方面的知识,高等数学期末考试,考试题型:单选题5个(约15%)、填空题5个(约
2、15%),计算题6个,应用题1个。考试时间:90分钟 命题原则 不超过期末复习指导的要求,试题主要分布在第二、三、四、五、六、八章,占80%以上,理解占10%,掌握占90%。题型有:填空题单项选择题计算题(约70%)。出题单位 中央广播电视大学 考试形式 闭卷,高等数学期末复习,复习资源,教材中央电大复习指导形成性考核册中央电大网上教学答疑文本重庆电大学习资源巴南电大教学资源,网络资源,1、资源网站,重庆电大教学平台:http:/巴南电大在线平台:http:/中 央 电 大 在 线:http:/www.open,注:要先注册,输入用户名和密码,然后登录。,2、网络资源内容,重庆电大教学平台:h
3、ttp:/巴南电大在线平台:http:/,(1)市电大责任老师介绍(2)教学大纲(3)课程教学实施细则(4)电子教案(5)直播课堂(6)重难分析(7)平时作业(4套)(8)期末复习提要,高等数学(1)重难点分析重庆电大巴南分校徐祖平,第一章 函数,理解函数概念,掌握函数的两要素;定义域和对应关系,会判断两函数是否相同;掌握求函数定义域的方法,会求初等函数的定义域和函数值;了解函数的主要性质(单调性、奇偶性、周期性和有界性),知道它们的几何特点;熟练掌握六类基本初等函数的解析表达式、定义域、主要性质和图形;了解复合函数概念,会对复合函数进行分解;了解初等函数的概念;了解分段函数概念,掌握求分段函
4、数定义域和函数值的方法;会列简单应用问题的函数关系式。,高等数学期末复习,第二章 极限与连续,了解极限的概念(数列极限、函数极限、左右极限),知道数列极限的“”定义和函数极限的描述性定义,会求左右极限;了解无穷小量的概念,了解无穷小量的运算性质及其与无穷大量的关系;掌握极限的四则运算法则,掌握两个重要极限,掌握求简单极限的常用方法;了解函数连续性的定义,了解函数在某点连续的概念,知道左连续和右连续的概念,会判断函数在某点的连续性;了解函数间断点的概念,会求函数的间断点,会判别函数间断点的类型;了解“初等函数在定义区间内连续”的结论,知道闭区间上的连续函数的几个性质。,高等数学期末复习,第三章
5、导数与微分,理解导数与微分概念(微分用 定义),了解导数的几何意义,会求曲线的切线和法线方程,知道可导与连续的关系;熟记导数与微分的基本公式,熟练掌握导数与微分的四则运算法则;熟练掌握复合函数的求导法则;掌握隐函数的微分法,取对数求导数的方法;知道一阶微分形式的不变性;了解高阶导数概念,掌握求显函数的二阶导数的方法。,高等数学期末复习,第四章 导数的应用,了解拉格朗日中值定理的条件和结论,会用拉格朗日定理证明简单的不等式;掌握洛比塔法则,能用它求“”、“”型不定式极限;掌握用一阶导数求函数单调区间、极值与极值点(包括判别)的方法,了解可导函数极值存在的必要条件,知道极值点与驻点的区别与联系;掌
6、握用二阶导数求曲线凹凸(包括判别)的方法,会求曲线的拐点;会求曲线的水平渐近线和垂直渐近线;掌握求解一些简单的实际问题中最大值和最小值的方法,以几何问题为主。,高等数学期末复习,第五章 不定积分,理解原函数与不定积分概念,了解不定积分的性质以及积分与导数(微分)的关系;熟练掌握积分基本公式和直接积分法;熟练掌握第一换元积分法和分部积分法;掌握第二换元积分法。,高等数学期末复习,第六章 积分及其应用,了解定积分概念(定义、几何意义)和定积分的性质;了解原函数存在定理,知道变上限的定积分,会求变上限定积分的导数;熟练掌握牛顿莱布尼兹公式;掌握定积分的换元积分法和分部积分法;了解无穷积分收敛性概念,
7、会判断无穷积分的收敛性或计算无穷积分;会用定积分计算简单的平面曲线围成图形的面积(直角坐标系)和绕坐标轴旋转生成的旋转体体积。,高等数学期末复习,第七章 无穷级数,了解级数收敛与发散概念及其主要性质;了解级数收敛的必要条件;掌握正项级数收敛性的比值判别法;知道几何级数和 级数收敛的条件;理解幂级数收敛半径概念,熟练掌握求收敛半径的方法;会求收敛区间。,高等数学期末复习,第八章 常微分方程,了解微分方程,阶,解(特解、通解),线性,初值问题等概念;掌握变量可分离微分方程的解法;熟练掌握一阶线性方程的解法;了解特征方程和特征根概念,熟练掌握求二阶线性常系数齐次微分方程通解的特征根法;掌握二阶线性常
8、系数非齐次方程(特殊自由项)的特解待定系数法,能求此类方程的通解,高等数学期复习,第一章:函数,理解函数的概念;掌握函数,中符号f()的含义;,了解函数的两要素;会求函数的定义域及函数值;会判断两个函数是否相等,两个函数相等的充分必要条件是定义域相等且对应关系相同,了解函数的主要性质,即单调性、奇偶性、有界性和周期性,若对任意x,,有,则称为偶函数,偶函数的图形关于y轴对称,若对任意x,,有,则称为奇函数,奇函数的图形关于原点对称,熟练掌握基本初等函数的解析表达式、定义域、主要性质和图形,基本初等函数指以下几种类型:,常数函数:,幂函数:,指数函数:,对数函数:,三角函数:,反三角函数:,了解
9、复合函数、初等函数的概念,,会把一个复合函数分解成较简单的函数,如函数,可以分解,分解后的函数前三个都是基本初等函数,,而第四个函数是常数函数和幂函数的乘积,会列简单的应用问题的函数关系式,高等数学1,综合练习,一、填空题,设,则,解:,设,则,得,故,函数,的定义域是,解:,对函数的第一项,,要求,且,即,且,对函数的第二项,要求,即,取公共部分,得函数定义域为,高等数学1,设,的定义域为,则函数,的图形关于对称,解:设,则对任意,有,即,是偶函数,,故图形关于,轴对称,高等数学1,二、单项选择题,下列各对函数中,()是相同的,A.,B.,C.,D.,解,A,B,D三个选项中的每对函数的定义
10、域都不同,,而选项C中的函数定义域相等,且对应关系相同,故选项C正确,设函数,的定义域为,,则函数,()对称,的图形关,于,A.,B.,轴,C.,轴,D.坐标原点,解:,设,则对任意,有,高等数学1,即,是奇函数,,故图形关于原点对称选项D正确,3设函数,的定义域是全体实数,,则函数,是(),A.单调减函数;,B.有界函数;,C.偶函数;,D.周期函数,解:,A,B,D三个选项都不一定满足。,设,则对任意,有,即,是偶函数,,故选项C正确,高等数学1,三、计算题,求下列函数的定义域:,解:,对,要求,即,对,要求,且,即,且,取公共部分,,得函数定义域为,对,要求,即,得函数定义域为,对,要求
11、,即,得函数定义域为,已知,求,解:,方法一:,设,则,得,即,由此得,方法二:,将,看作新的变量,,得,同理,高等数学1,高等数学1,判断下列函数的奇偶性:,解:,对任意,有,可知,是奇函数,解:,对任意,有,可知,是奇函数,解:,对任意,有,可知,是偶函数,高等数学1,本章重点:,函数概念及其性质,理解函数的概念,了解决定函数的要素是定义域和对应关系,,能根据这两个要素,判别两个函数是否相等。,能熟练地求出函数的定义域和函数值。,了解函数的周期性、奇偶性、单调性、和有界性,,特别是要会判断函数的奇偶性。,例1、求下列函数的定义域,(1),解,函数的定义域是,解得,即函数的定义域是,且,高等
12、数学1,(2),解,分段函数的定义域是所有定义区间的并集,,此分段函数的定义域是,或,但,的定义域是,故综合起来可知所求函数的定义域是,例2、,若函数,求,解,已知,即,根据函数概念可知,(即下划线的部分替换成x),(即下划线的部分替换成),(即下划线的部分替换成0),高等数学1,规范以上的做法就是:,设,则,将,代入,中,即有,令,则有,令,则有,令,则有,例3、,(1)下列函数对中,哪一对函数表示的是同一个函数?,A,B,C,D,解,A,B,D中两个函数的定义域都不相同,故它们不是同一函数,,高等数学1,C中函数,的定义域是,对应关系可化为,故这两个函数是相同的函数。,(2)下列函数中,哪
13、个函数是奇函数?,A,B,C,D,解,由奇函数的定义验证A,C可知它们都不满足,D满足,即它为偶函数,验证B,故此函数是奇函数。,高等数学1,2.基本初等函数,了解复合函数、初等函数的概念,,会分析复合函数的复合过程,,能把一个复合函数分解成几个简单函数。,(这在学习第三章导数与微分内容时要用到),如将函数,分解成,高等数学1,第2章 极限与连续,本章重点:,极限的计算,了解极限的概念,知道左右极限的概念,,知道函数在点,处存在极限的充分必要,条件是,在,处的左右极限存在且相等。,关于极限的计算,要熟练掌握以下几种常用方法:,(1)极限的四则运算法则:,运用时要注意法则的条件是各个部分的极限都
14、存在,,且分母不为0。,当所求极限不满足条件时,,常根据函数的具体情况进行分解因式,(以消去,零因子)、或无理式的有理化、或三角函数变换、,或分子分母同时除以,(分子分母同,趋于无穷大时),等变形手段,,以使函数满足四则运算法则的条件。,(2)两个重要极限:,熟记,要注意这两个公式自变量的,变化趋势以及相应的函数表达,同时要熟悉它们的变形形式:,高等数学1,(3)利用无穷小的性质计算:,无穷小量是指极限为0 的量,有限个无穷小量之和、,积都是无穷小量,有界变量与无穷小量之和还是无穷小量。,(4)利用函数的连续性计算:连续函数在一点的极限值等于函数在该点的函数值。,(5)利用洛必塔法则计算:参看
15、第四章的有关内容。,例1:求下列极限,解,(1),分子、分母同除以,则,高等数学1,(2),解,首先将分母有理化,然后在利用重要极限计算,(3),解,由于,时,有,因此,还是无穷小量,故,高等数学1,(4),解,(5),解,(6),解,高等数学1,2、函数连续,理解函数在一点连续的概念,,它包括三层含义:,在,的一个邻域内有定义;,在,处存在极限;,极限值等于,在,处的函数值,,这三点缺一不可。,若函数,在,至少有一条不满足上述三条,,则函数在该点是间断的,,会求函数的间断,点。,了解函数在区间上连续的概念,,由函数在一点连续的定义,,会讨论分段函数的连续性。,知道连续函数的和、差、积、商(分
16、母不为0)仍是连续函数,,两个连续函数的复合仍为,连续函数,,初等函数在其定义域内是连续函数。,知道闭区间上连续函数的性质(最大最,小值存在定理、零点定理、介值定理)。,例2,讨论函数,在,处的连续性。,高等数学1,解,的定义域为,由于,在,点处的左右极限不相等,,故极限不存在,,因此函数,在,点间断。,第三章:导数与微分,高等数学1,理解导数的概念;,了解导数的几何意义;,会求曲线的切线和法线;,会用定义计算简单函数的导数;,知道可导与连续的关系。,高等数学1,在点,处可导是指极限,存在,且该点处的导数就是这个极限。导数极限还可写成,在点,处的导数,的几何意义是曲线,上点,处的切线斜率,曲线
17、,在点,处的切线方程为,高等数学1,函数,在,点可导,则在,点连续。反之函数,在,点连续,在,点不一定可导。,了解微分的概念;知道一阶微分形式不变性。,熟记导数与微分的基本公式;熟练掌握导数与微分的四则运算法则。,微分四则运算法则与导数四则运算法则类似,熟练掌握复合函数的求导法则。,高等数学1,掌握隐函数求导法,取对数求导法,参数表示的函数的求导法。,一般当函数表达式中有乘除关系或根式时,求导时采用取对数求导法,如,求,直接求导比较麻烦,采用取对数求导法,将上式两端取对数得,两端求导得,整理后便可得,高等数学1,若函数由参数方程,的形式给出,则有导数公式,了解高阶导数的概念;会求函数的二阶导数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 考前 复习

链接地址:https://www.31ppt.com/p-6153598.html