高阶常系数线性微分方程、欧拉方程(IV).ppt
《高阶常系数线性微分方程、欧拉方程(IV).ppt》由会员分享,可在线阅读,更多相关《高阶常系数线性微分方程、欧拉方程(IV).ppt(49页珍藏版)》请在三一办公上搜索。
1、 一元微积分学,大 学 数 学(一),第三十讲 一元微积分的应用(六),脚本编写:刘楚中,教案制作:刘楚中,微积分在物理中的应用,第七章 常微分方程,本章学习要求:,了解微分方程、解、通解、初始条件和特解的概念.了解下列几种一阶微分方程:变量可分离的方程、齐次方 程、一阶线性方程、伯努利(Bernoulli)方程和全微分 方程.熟练掌握分离变量法和一阶线性方程的解法.会利用变量代换的方法求解齐次方程和伯努利方程.知道下列高阶方程的降阶法:,了解高阶线性微分方程阶的结构,并知道高阶常系数齐线 性微分方程的解法.熟练掌握二阶常系数齐线性微分方程的解法.掌握自由项(右端)为多项式、指数函数、正弦函数
2、、余 弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.,第五节 二阶常系数线性微分方程,特征方程,特征根,一、二阶常系数齐次线性微分方程,形如,的方程,称为二阶常系数齐线性微分方程,,即,二阶常系数齐线性微分方程,的特征方程为,是方程(1)的两个线性无关的解,故方程(1)的通解为,二阶常系数齐线性微分方程,的特征方程为,由求根公式,由刘维尔公式求另一个解:,于是,当特征方程有重实根时,方程(1)的通解为,二阶常系数齐线性微分方程,的特征方程为,3)特征方程有一对共轭复根:,是方程(1)的两个线性无关的解,其通解为,由线性方程解的性质:,均为方程(1)的解,且它们是线性无关的:,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高阶常 系数 线性 微分方程 方程 IV
链接地址:https://www.31ppt.com/p-6151641.html