工业微生物学基础.ppt
《工业微生物学基础.ppt》由会员分享,可在线阅读,更多相关《工业微生物学基础.ppt(215页珍藏版)》请在三一办公上搜索。
1、第二章 工业微生物学基础,第一节 微生物的特点 第二节 工业生产中常见的微生物 第三节 微生物菌种的分离选育与保藏 第四节 微生物的营养 第五节 影响微生物生长发育的因素 第六节 微生物的培养第七节 灭菌技术,第二章教学目的与要求:,掌握微生物的细胞结构、特点及鉴别。掌握诱变育种的理论和原生质体融合技术的步骤。熟悉微生物的营养和微生物对营养物质的吸收过程。会分析影响微生物生长发育的因素。掌握微生物群体的生长规律,了解微生物的培养过程。熟悉灭菌的方法。,第一节 微生物的特点,微生物(microorganism microbe)是一切微小生物的总称,它们是一些个体微小,需借助显微镜才能看清其外形、
2、结构简单的低等生物;它们有的是单细胞,有的是多细胞,还有些没有细胞结构。,从生化观点看,微生物是一种生物催化剂,它促使生物物质转化的进行。另一方面,微生物细胞又与反应工程中的反应器十分相象,原料中的养分(即反应物)透过微生物活细胞周围的细胞壁和细胞膜,进入微生物体内,由微生物体内酶系的催化作用,把反应物转化为产物,最后产物被释放出来。所以从化学工程角度考虑,微生物细胞又可认为是一种极其微小的“反应器”。,微生物个体所特有的小体积、大表面积的特点,给它们带来了一系列有别于其他高等生物的特征:,(1)体积小,表面大微生物的个体都极其微小,一般用微米(即10-6m)或纳米(即10-9m)作单位。以微
3、生物的典型代表-细菌为例,其最普遍的杆菌的平均长度2微米,1500个杆菌头尾衔接起来仅有一粒芝麻长,细菌的重量更微乎其微,每毫克细菌数比全地球人口总数还多。任何物体被分割得越细,其比表面积(单位体积所占有的表面积)就越大,大肠杆菌的这一比值可高达30万。微生物的这种小体积大表面积的特点,特别有利于它们与周围环境进行物质、能量和信息的交换。实际上,微生物的一系列其他属性都和这一特点密切相关。,(2)种类多、分布广,目前已发现的微生物在10万种以上。不同种类的微生物具有不同的代谢方式,能分解各式各样的有机物质和无机物质:凡动植物能利用的营养物质,微生物一概可以利用;而大量为动植物所不能利用的,甚至
4、是剧毒的物质,微生物照样可以很好的利用。由于微生物的食谱极广、生长要求不高以及生长繁殖速度特别快等原因,使得它们在自然界中分布极其广泛,上至天空下至深海,到处都有微生物存在,而土壤则是各种微生物的大本营。一亩肥沃的土壤,在150cm深的表土内就含有300kg以上的真菌 和裂殖菌。,固氮菌zotobacteraceae细菌的一科。菌体杆状、卵圆形或球形,无内生芽孢,革兰氏染色阴性。严格好氧性,有机营养型,能固定空气中的氮素。包括固氮菌属、氮单孢菌属、拜耶林克氏菌属和德克斯氏菌属。,(3)生长旺、繁殖快,在生物界中,微生物具有极高的繁殖速度,其中以二均分裂方式繁殖的细菌尤为突出。例如,大肠杆菌在3
5、7下以20min分裂一次计,则一个细胞经48h后可产生2.21043个后代,假如一个细菌重量为10-12克,那么这时的总重量将在2.21025吨,即相当于4000个地球之重。,(4)适应强,易变异,微生物对环境条件尤其是恶劣的极端环境所具有的惊人适应力,堪称生物界之最。例如,某些细菌可在100以上的温度条件下正常生长;大多数细菌能耐0-196的任何低温;一些嗜盐菌甚至能在32%的饱和盐水中正常生活;许多微生物尤其是产芽孢的细菌可在干燥条件下保藏几十年、几百年甚至上千年。此外,耐酸碱、抗辐射、耐缺氧、耐毒物等特性在微生物中也是极为常见的。,由于微生物的个体一般都是单细胞或接近于单细胞,利用物理或
6、化学的人工诱变处理后,容易使它们的遗传性质发生变异,从而改变微生物的代谢途径,产生新菌种,达到为人类服务的目的。,第二节 工业生产中常见的微生物,自然界里,微生物的种类繁多,可粗分为:,原核微生物(prokaryotic microbe):指核质和细胞质之间不存在明显核膜,其染色体由单一核酸组成的一类微生物。细胞内有明显的核区,但没有核膜、核仁,核区内含有一条DNA构成的细菌染色体。真核微生物(Eucarvotic microbe):凡是细胞核具有核膜,能进行有丝分裂,细胞质中存在线粒体或同时存在叶绿体等细胞器的微小生物,都称为真核微生物.细胞内含有具体的细胞核,细胞核有核仁,核膜和一至数条D
7、NA构成的染色体。非细胞生物没有完整的细胞结构,仅含有一种类型的核酸(DNA或RNA)不能进行独立的代谢作用,如病毒(virus)噬菌体(phage)是侵染细菌的微生物病毒,人类在100多年前从植物的花粉细胞中,发现了一些丝状和粒状的东西.直到1879年德国生物学家弗莱明(Fleming1843一1905)把细胞核中的丝状和粒状的东西,用染料染红并观察它,发现这些东西平时散漫地分布在细胞核中,当细胞分裂时,散漫的染色物体便浓缩,形成一定数目和一定形状的条状物,到分裂完成时,条状物又疏松为散漫状,后来科学家就把这种染色的条状物称为染色体染色体(chromosome)由DNA、蛋白质以及少量的RN
8、A构成的线状或短棒状的物质,是遗传物质的载体。它是由细胞分裂间期的染色质高度螺旋化的产物。,染色体是遗传信息的主要携带者,存在于细胞核内。,1883年美国学者提出了遗传基因在染色体上的学说.1928年摩尔根证实了染色体是遗传基因的载体,从而获得了生理医学诺贝尔奖。1956年美籍华裔遗传学家Joe Hin Tjio(庄有兴)等人明确了人类每个细胞有46条染色体,46条染色体按其大小、形态配成23对,第一对到第二十二对叫做常染色体,为男女共有,第二十三对是一对性染色体。女性性染色体是两条X染色体,而男性是X染色体和Y染色体各一条。,一、细菌(germs),细菌是自然界中分布最广、数量最多,与人类关
9、系最密切的一类微生物。细菌为单细胞生物,分裂繁殖,体积很小,直径约0.5m,长度约0.5-5m,具有杆状、球状、螺旋状等基本形态(见图2-1)。,1982年,澳大利亚学者巴里马歇尔和罗宾沃伦发现了幽门螺杆菌(Helicobacter pylori,Hp),并证明该细菌感染胃部会导致胃炎、胃溃疡和十二指肠溃疡。这一研究成果打破了当时流行的医学教条,并最终于20多年后帮助两位科学家赢取了2005年诺贝尔医学奖。大量研究表明,超过90%的十二指肠溃疡和80%左右的胃溃疡,都是由幽门螺杆菌感染所导致的。,大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组
10、成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症某些血清型的大肠杆菌可引起不同症状的腹泻,根据不同的生物学特性将致病性大肠杆菌分为5类:致病性大肠杆菌(EPEC)、肠产毒性大肠杆菌(ETEC)、肠侵袭性大肠杆菌(EIEC)、肠出血性大肠杆菌(EIIEC)、肠黏附性大肠杆菌(EAEC)。,细菌的细胞在原核生物中具有代表性,它主要由细胞壁、细胞膜、细胞质、类核及内含物等构成。有些细胞还有荚膜或鞭毛;有的细胞可形成芽孢。图2-2是细菌细胞的结构模式图。,细胞壁(cellwall)是细菌细胞的外壁,,质地坚韧而
11、略有弹性、具有固定菌体外形和保护细胞内在物质的作用。,细胞膜(cell membrane):,又称质膜.细胞表面的一层薄膜.有时称为细胞外膜或原生质膜.主要结构成份一般是蛋白质占60%-80%,类脂占20%-40%,碳水化合物约占5%(分布在类脂和蛋白质之间).它的功能是能选择性地控制与外界的交换作用摄进细菌需要的营养物质并排出多余的代谢产物,细胞膜还有让胞外酶向菌体外透过的功能。细胞体内的酶系也主要集中在细胞膜的内侧.,细胞质(cytoplasm)是细菌细胞的基础物质,是一种无色透明的胶状物,主要成分是核糖体、蛋白质、核酸、脂类及少量糖类和无机盐类。细胞质是细菌的内在环境,具有生命活动的各种
12、特性,含有各种酶系,使细菌细胞与其周围环境不断地进行新陈代谢作用。,细胞核(nucleus)的主要成分是脱氧核糖核酸DNA,是负载细菌遗传信息的物质基础。细菌是一种比较原始的生物,它的细胞核没有核膜,无固定的形状,称原核或类核。类核是与高等生物细胞核功能相似的核物质,又称染色体或细菌染色体,一般位于细胞的中央部分,呈球状、卵圆状、亚铃状或带状。,质粒(plasmid),存在于一些细菌的细胞质中。它是存在于细胞染色体外或附加于染色体上的遗传物质,这些遗传物质往往与细胞主要代谢无关。质粒一般由闭合环状双螺旋DNA分子构成。核糖体(Ribosome),是由核糖核酸和蛋白质组成的微粒,称为核糖核蛋白体
13、,简称核糖体。分布在细胞质中,是微生物合成酶或蛋白质的“车间”,是细菌发育、增殖、遗传所不可缺少的重要细胞器。,芽孢(spore)是某些细菌在其生长发育后期,在细胞内部形成的一种圆形或椭圆形的抵抗不良环境的休眠体。一旦获得适宜的环境,芽孢就会萌发成为营养细胞(一般的菌体细胞)。,菌落(colony).将单个微生物细胞或一小堆同种细胞接种在固体培养基的表面时,细胞就会迅速进行生长繁殖,形成以母细胞为中心的一堆肉眼可见的、有一定形态构造的子细胞集团。如果将某一纯种的大量细胞密集的接种到固体培养基表面,长成的各菌落相互联接成一片,这就是菌苔(lawn)。细菌的菌落的特征:湿润、较透明、易挑取、质地均
14、匀以及菌落正反面或边缘与中央部位的颜色一致等,沙门氏菌显色培养基,二、放线菌(Actinomycete),是因在培养基的表面上的菌落呈放射状而得名。放线菌的菌丝有基内菌丝和气生菌丝两种:匍伏生长于培养基表面或深入培养基里面摄取养料的称基内(或营养)菌丝;基内菌丝发育到一定阶段后向空间长出的菌丝体,称为气生菌丝;气生菌丝发育到一定阶段后其上面形成孢子丝,孢子丝是气生菌丝的一部分,其形状有直、波曲、螺旋、轮生之分。放线菌的孢子落入适宜的培养基中就可以繁殖出新的菌体。,放线菌虽然有发育良好的菌丝体,,但无横隔,是单细胞,菌丝和孢子内不具有完整的核,由一团脱氧核糖核酸(DNA)的小纤维构成,没有核膜、
15、核仁、线粒体等,因此,放线菌属于原核微生物。放射菌广泛存在于泥土中,通常每克土壤中含有104-106个放线菌土壤的土腥味便是这类微生物散发的。大多数放线菌是腐生菌,对自然界的物质循环起着一定的作用;少数为寄生菌,能引起人和动植物的病害;有的放线菌与植物共生,可固定大气中的氮。,放线菌最大的经济价值是,产生能抑制其他微生物生长的抗生素,可用于治疗人和动植物的疾病。据统计从自然界发现和分离了5500种以自上的抗生素,其中大约2/3由放线菌产生,用于临床和工农林业生产上的约百种,如链霉素、四环素、庆大霉素、土霉素、金霉素、春雷霉素、争光霉素、灭瘟素等。此外放线菌在甾体转化、石油脱蜡、烃类发酵、污水处
16、理等方面也有所应用。放线菌的菌落特征:干燥、不透明、表面呈紧密的丝绒状,上有一层色彩鲜艳的干粉;菌落和培养基的连接紧密,难以挑取;菌落的正反面颜色常常不一致;菌落边缘培养基的平面有变形现象等。,三、酵母菌(yeast),酵母菌是单细胞真核微生物,酵母菌的形态多种多样,其菌体细胞以卵形为主,其次有球形、椭圆形、柠檬形、腊肠形及荷藕形等,酵母菌的菌落,酵母菌的繁殖方式分,无性繁殖,最普遍方式是芽殖,即酵母细胞长到一定程度后能反复出芽繁殖后代。有性繁殖,用裂殖方式繁殖酵母菌在自然界分布很广,主要生长在偏酸性的含糖环境中,在水果、蔬菜、蜜饯的表面和在果园土壤中最为常见,酵母菌的菌落特征与细菌的相仿,,
17、但较不透明,且颜色比较单调,多呈乳白色或矿烛色,少数为红色,个别为黑色。酵母菌菌落一般会散发出悦人的酒香味。酵母在发酵生产中有着特别重要的地位。,四、霉菌(molds),霉菌亦称丝状真菌,是真菌的主要代表,意即发霉的真菌,它们往往能形成分枝繁茂的菌丝体,但又不象蘑菇那样产生大型的子实体。在潮湿温暖的地方,很多物品上长出一些肉眼可见的绒毛状、絮状或蛛网状的菌落,那就是霉菌。如根霉、毛霉、曲霉、青霉等真菌。霉菌的营养体由菌丝组成,菌丝可以无限制的伸长和产生分支,分支的菌丝相互交错在一起,形成菌丝体,通常其大小肉眼可见。真菌(Fungus)是一种真核生物。最常见的真菌是各类蕈(xun)类,另外真菌也
18、包括霉菌和酵母,霉菌的菌丝有两类:,一类菌丝中无横隔,整个菌丝体就是一个单细胞,含有多个细胞核,例如毛霉、根霉及犁头霉等;另一类菌丝由多细胞构成,内有横隔,每段就是一个细胞,横隔中央有极细的孔,使细胞质与养料沟通,大多数霉菌均属这类菌丝体。霉菌的繁殖主要依靠孢子进行。形成孢子的方式分为无性和有性两类,但霉菌主要是用无性孢子进行繁殖的。,霉菌的菌落特征与放线菌接近。霉菌的菌落形态较大,质地一般比放线菌疏松,外观干燥不透明,呈现或紧或松的蛛网状、绒毛状或棉絮状;菌落与培养基连接紧密,不易挑取,菌落正反面的颜色和边缘与中心的颜色常不一致。,霉菌在自然界分布很广,与工农业生产和人们日常生活关系密切。它
19、分解一些复杂的有机物(如纤维素、几丁质、蛋白质等)的能力 较强,对自然界物质循环起着重要作用。除用于传统的酿洒、制酱和做其他发酵食品外,在近代发酵工业中,更是广泛利用霉菌来生产酒精、有机酸、抗生素、维生素、激素、酶制剂等多种有用物品。霉菌也有不利的一面,它能引起家副产品、衣物、食品、原料、器材和产品等发霉变质,有的还能引起人类和动植物的疾病,特别是近年来发现黄曲霉寄生在谷物上,产生黄曲霉素,有明显的致癌作用,已引起人们的重视。,青霉素是抗菌素的一种,是从青霉菌培养液中提制的药物,是第一种能够治疗人类疾病的抗生素。青霉素的发现者是英国细菌学家弗莱明。1928年的一天,弗莱明在他的一间简陋的实验室
20、里研究导致人体发热的葡萄球菌。由于盖子没有盖好,他发觉培养细菌用的琼脂上附了一层青霉菌。这是从楼上的一位研究青霉菌的学者的窗口飘落进来的。使弗莱明感到惊讶的是,在青霉菌的近旁,葡萄球菌忽然不见了。这个偶然的发现深深吸引了他,他设法培养这种霉菌进行多次试验,证明青霉素可以在几小时内将葡萄球菌全部杀死。弗莱明据此发明了葡萄球菌的克星青霉素。,图中央是青霉菌,周围是致病细菌。距青霉素最远的细菌个大、色浓,活力十足;距青霉菌较近的细菌个较小、色较浅,活力较差;而最接近青霉菌的细菌个最小、色发白,显然已经死亡,五、病毒(virus),病毒是一类比细菌小,没有细胞结构,不能独立生活的微生物 病毒个体极其微
21、小,要有电子显微镜才能看到,尚构不成一个完整的细胞(非细胞微生物),它具有一个核酸构成的“芯子”,外包一层蛋白质外壳,无独立生活能力,只能存活于别的生物的活细胞中,其寄生性具有高度的专一性,当噬菌体(phage)与敏感菌的细胞相遇后,,首先吸附于敏感菌的细胞壁上,然后噬菌体的尾部分泌出溶菌酶将敏感菌的细胞壁溶成孔洞,尾鞘收缩将噬菌体头部内的核酸压人宿主细胞,利用宿主细胞提供的原料、能量和合成场所,在噬菌体核酸的控制下进行噬菌体核酸的复制及蛋白质进行装配,从而形成许多新的噬菌体。新的噬菌体成熟后,寄主细胞破裂,释放出大量噬菌体。,第三节 微生物菌种的分离选育与保藏,选育优良菌种的意义:提高发酵产
22、品的质量和产量,提高发酵原料的利用率,还可增加品种,缩短生产周期,改进发酵和提炼工艺条件。,一、微生物菌种的分离,现有菌种是有限的,迄今生产上使用的菌种,最初都是从自然界分离得到的,新菌种的分离是一项长期而又重要的任务。从自然界分离新菌种一般步骤是:采样 增殖培养 纯种分离 较优菌株。,(一)采样,采样是根据微生物的生态特点从自然界取样分离所需菌种的过程。例如,到堆积枯枝、落叶和朽木的地方分离产纤维素酶的菌种,从果皮上分离酒精酵母,从油田附近土壤中得到石油酵母,从污泥中得到甲烷产生菌,从海洋中可分离到耐盐和低温生产菌等。土壤是微生物的大本营,如果预先不了解某种生产菌的具体来源,一般可从土壤中分
23、离.采土方式一般是在除去表土,取离地面5-15cm处的土样。,(二)增殖培养,增殖培养就是给混合菌群提供一些有利于所需菌株生长或不利于其他菌型生长的条件以促使所需菌株大量繁殖,从而有利于分离所需菌株。碳源利用的控制;控制增殖培养基的pH值;添加一些专一性的抑制剂;控制增殖培养的温度。,(三)纯种分离,尽管通过增殖培养,但微生物仍处于混杂生长状态,必须分离纯化,才能获得纯种。分离方法很多,常用的有划线法和稀释法。划线法是将含菌样品在固体培养基表面作有规则的划线(扇形划线法、方格划线法及平行划线法等),菌样经过多次从点到线的稀释,最后经培养得到单菌落。稀释法是将含菌样品经过多次充分稀释,使每一微生
24、物远离其他微生物而单独生长成为菌落,从而得到纯种。,(四)筛选,菌种筛选的目的是为了找出优壮菌株。方法很多,如观察生产的速度、形状、耐环境变化及作用底物的情况等。筛选产酶菌时可在培养基上添加酶作用的底物,从观察底物的变化情况来确认菌种的产酶能力。例如在筛选产-淀粉酶的菌种时,可在琼脂培养基中加1%的可溶性淀粉,再在培养基上涂布菌悬液,经一定时间后喷上稀I2-KI溶液,产生淀粉酶的菌周围就出现透明圈,无活力者呈蓝色,透明圈愈大,表示活力愈高。然后,再采用与生产相近的培养基和培养条件,通过三角瓶进行小型发酵试验,以求得到适合工业生产用的菌种。,二、诱变育种,从自然界筛选出来的菌种,往往还不完全符合
25、生产的要求,如产量低、副产物多、生产周期长等,所以还要进行育种,目的是对菌种进行改良,符合生产要求。诱变育种是以诱发突变为基础的育种。是迄今为止国内外提高菌种产量、性能的主要手段之一。,可遗传的变化称为变异(variation),又称突变,它是微生物产生变种的根源,是育种的基础。根据发生的原因,可分为自然突变和诱发突变:自然突变是指在自然条件下发生的基因突变(gene mutation),发生的频率很小,一般仅10-8-10-10左右。诱发突变是指用各种物理化学因素人工诱发的基因突变,后者的突变率(mutation rate)要比前者的高得多,,诱变育种的理论根据是:,一切诱变剂的作用机制都是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 微生物学 基础
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6114767.html