导数的几何意义(115).ppt
《导数的几何意义(115).ppt》由会员分享,可在线阅读,更多相关《导数的几何意义(115).ppt(12页珍藏版)》请在三一办公上搜索。
1、导数的几何意义,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值。,我们把物体在某一时刻的速度称为瞬时速度.,从函数y=f(x)在x=x0处的瞬时变化率是:,我们称它为函数y=f(x),在x=x0处的导数,记作f(x0)或y|xx0即,这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在x=x0处的导数.,要注意,曲线在某点处的切线:1)与该点的位置有关;要根据割线是否有极限位置来判断与求解.如有极限,则在 此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.,求曲
2、线在某点处的切线方程的基本步骤:求出P点的坐标;利用切线斜率的定义求 出切线的斜率;利用点斜式求切线方程.,在不致发生混淆时,导函数也简称导数,函数导函数,由函数f(x)在x=x0处求导数的过程可以看到,当时,f(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:,如何求函数y=f(x)的导数?,看一个例子:,下面把前面知识小结:,a.导数是从众多实际问题中抽象出来的具有相同的数 学表达式的一个重要概念,要从它的几何意义和物 理意义认识这一概念的实质,学会用事物在全过 程中的发展变化规律来确定它在某一时刻的状态。,b.要切实掌握求导数的三个步骤:(1)求
3、函数的增 量;(2)求平均变化率;(3)取极限,得导数。,(3)函数f(x)在点x0处的导数 就是导函数 在x=x0处的函数值,即。这也是 求函数在点x0处的导数的方法之一。,小结:,(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数。,(1)函数在一点处的导数,就是在该点的函数的改 变量与自变量的改变量之比的极限,它是一个 常数,不是变数。,c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系。,(1)求出函数在点x0处的变化率,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,求切线方程的步骤:,小结:,无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 几何 意义 115
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6114051.html