大数据十大经典算法kNN讲解PPT.ppt
《大数据十大经典算法kNN讲解PPT.ppt》由会员分享,可在线阅读,更多相关《大数据十大经典算法kNN讲解PPT.ppt(15页珍藏版)》请在三一办公上搜索。
1、KNN:K最近邻分类算法,K-Nearest Neighbor Classification,KNN算法怎么来的?,KNN算法是怎么来的,猜猜看:最后一行未知电影属于什么类型的电影。,KNN算法是怎么来的,猜猜看:最后一行未知点属于什么类型的点。,KNN算法是怎么来的,想一想:下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类?,1968年,Cover和Hart提出了最初的近邻法。,最近邻算法,提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类。由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最
2、近邻者的类别作为决策未知样本类别的唯一依据。但是,最近邻算法明显是存在缺陷的,我们来看一个例子。,KNN算法是怎么来的,问题:有一个未知形状X(图中绿色的圆点),如何判断X是什么形状?,K-最近邻算法,显然,通过上面的例子我们可以明显发现最近邻算法的缺陷对噪声数据过于敏感,为了解决这个问题,我们可以可以把位置样本周边的多个最近样本计算在内,扩大参与决策的样本量,以避免个别数据直接决定决策结果。由此,我们引进K-最近邻算法。,KNN算法是用来干什么的,K-最近邻算法是最近邻算法的一个延伸。基本思路是:选择未知样本一定范围内确定个数的K个样本,该K个样本大多数属于某一类型,则未知样本判定为该类型。
3、下面借助图形解释一下。,KNN算法的实现步骤,算法步骤:step.1-初始化距离为最大值step.2-计算未知样本和每个训练样本的距离diststep.3-得到目前K个最临近样本中的最大距离maxdiststep.4-如果dist小于maxdist,则将该训练样本作为K-最近邻样本step.5-重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完step.6-统计K个最近邻样本中每个类别出现的次数step.7-选择出现频率最大的类别作为未知样本的类别,KNN算法的缺陷,观察下面的例子,我们看到,对于位置样本X,通过KNN算法,我们显然可以得到X应属于红点,但对于位置样本Y,通过KNN算法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 经典 算法 kNN 讲解 PPT
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6110376.html