图像引导的自适应放疗.ppt
《图像引导的自适应放疗.ppt》由会员分享,可在线阅读,更多相关《图像引导的自适应放疗.ppt(141页珍藏版)》请在三一办公上搜索。
1、夏邦传 Nov 19,2011,图像引导放疗进展-自适应放射治疗,何为自适应放疗?,自适应放疗(adaptive radiation therapy,ART)是图像引导放疗(image-guided radiation therapy,IGRT)发展延伸出得一种新型放疗技术。其实施是通过照射方式的改变来实现对患者组织解剖或肿瘤变化的调整,即通过引导图像(如CT、EPID等)评判患者解剖和生理变化,或治疗过程中所反馈信息如肿瘤大小、形态及位置变化,分析分次治疗与原计划设计之间的差异,从而指导后续分次治疗计划的重新设计。,目的,提高肿瘤放疗的精准性,实现对肿瘤靶区高剂量照射的同时,最大限度地减少周
2、围正常组织受到高剂量照射的可能性,进而降低并发症发生概率。,内容提要,一、ART概述二、自适应优化的考虑三、自适应放疗的过程四、自适应放疗的临床应用五、结语,自适应放疗(ART)概述,一、ART概述,自适应放疗:新鲜?陈旧?,Mackie等于1993年发表了螺旋断层治疗(HT)设计思路的同时,就从理论上提出了利用其CT影像及剂量重建来修正对患者后续分次治疗的设想,这是第1次提及剂量重建和基于治疗时CT图像所获取信息的自适应放疗思想。特别是近年来随着三维适形放疗和调强放疗的开展,越来越多的研究者关注于肿瘤靶区定义的精确性和对正常组织器官位置、大小和形状的改变都会影响到放疗的精准性。,靶区外加边界
3、的形成,为了确保临床靶体积(CTV)获得足够处方剂量,最简单方法是在CTV外加一个边界形成计划靶体积(PTV),而这一边界则必须考虑到患者治疗过程中的摆位误差、器官运动以及器官变形。但这种外加边界方法同时很有可能会增加正常组织受照射体积,从而引发靶区周围关键器官的放射性反应,进而增加并发症可能。,ART概念的提出,很多研究者希望能在不漏射靶体积条件下最大限度减少外扩边界。为解决这一难题,1997年YAN等正式提出了ART概念。经过10多年研究以及放疗中影像设备的快速发展,ART技术已逐步成熟并正相继开展中。,ART的定义,通过归纳总结可定义ART为一个闭循环的放疗过程,能通过图像来检测系统的变
4、化,继而根据变化的反馈信息相对应地重新优化治疗计划。,IGRT与ART的异同,IGRT与ART的异同,图1分别表示出IGRT和ART的流程图,从中可发现虽然它们各自的时间顺序有所改变,但在获取患者诊断影像、计划设计以及治疗的基本功能方面是没有区别的;ART所表现出的复杂性主要在于根据患者影像变化而改变治疗计划的反复循环工作流程上,其中的影像验证和计划变换是实时、在线的就是在线式ART,非实时性的则是离线式ART。,在IN-ROOM CT上的应用,CTVISION系统中所获得的诊断级定位图像可实现类似往常一样的靶区及敏感器官勾画。同时,这些图像也可用于与治疗时所获取的日常验证图像相关联,从而予以
5、执行在线或离线式处理。图2列出了自适应放疗中在CTVISION系统上使获取图像的流程图,自适应处理流程,二、自适应优化的考虑,基于患者四维影像的计划设计是ART中关键性的组成部分之一。本质上,治疗计划设计优化应当是一种四维处理过程。当治疗期间摆位和(或)组织器官结构发生变化时,应考虑时间(一维)相位。这些变化也许发生在分次放疗内(分次内组织器官或摆位变化),或分次放疗间(分次间组织器官或摆位变化)。,传统计划设计的局限性,传统上讲,通过采用代表患者的三维轮廓(典型CT图像)实现了治疗计划的设计,并假定治疗期间这种轮廓将得以保持。该方法考虑到了组织器官和(或)摆位可能的改变,导致靶区和(或)敏感
6、器官的外扩边界增加。即使在一些病例治疗中此方法可能足够,但在靶区覆盖和正常组织避让之间也许不能达到最后的权衡,从而患者总剂量可能导致增加。,时间变量的考虑,随着图像引导及其处理过程的有效性,放疗中除实际沉积剂量外还取得了患者体位的时间变化参数,治疗计划优化已本质上获得一种新维数,或者分次间(内)可将时间合并作为可变量之一,从而用于确定如何和什么时候实施对治疗的调整。,1、治疗分次内的考虑,治疗分次内的变化是指在各分次治疗过程中靶区位置或形状随时间的变化。临床中从四维图像系列可获得呼吸运动时相,在计划中形成出四维治疗模式,并同时考虑患者位置和组织器官的改变。,1、治疗分次内的考虑,该问题的最后表
7、现就是运用患者处于呼吸状态中的信息形成治疗计划,然后将最优化四维计划予以治疗实施,其应当考虑患者位置和组织器官的反复改变状态。对不同时相而言,当组织器官变化导致其照射剂量增加时可通过肿瘤控制和组织并发症发生概率间取得一种较好的折衷,即以这样方式形成治疗计划。,1、治疗分次内的考虑,另外一种重要考虑就是也应通过采用可变形的剂量配准覆盖组织的改变。因此,在四维计划设计和治疗实施讨论特定执行前应描述出需取得该目标的一些可变形配准能力。,1、治疗分次内的考虑,图3描述了不同时相图像变形配准的处理过程,图像中将每一相位映射到参考相位(图中为第1相位)图中。该病例中采用了LU等开发的变形配准技术,这种技术
8、非常有效且在肺癌病例中提供了较好结果。对于螺旋断层放疗技术,ZHANG等作为呼吸同步照射已描述了四维计划的最简单实施和束流照射。LU等也相继提出了实时运动自适应照射和自适应算法的技术解决方案。,2、治疗分次间的考虑,分次治疗期间足够的外扩边界在一定程度上可对肿瘤剂量覆盖与危及器官保护之间提供一种较好的权衡。然而,肿瘤和危及器官不可能总具有同样形状、接受同样剂量或处于相同位置,所以沉积剂量将会很明显地随时间而改变,并将与通常假定独立于时间的计划相比较。,三、自适应放疗的过程,放疗每分次前、期间或之后在许多成像形式和照射技术间所选择的可能性已经开启了放疗计划管理中许多可能的新事物。CTVISION
9、系统中计划图像可用于与分次治疗前所获取的日常引导图像相关联对比,从而可执行在线或离线式处理。,1、治疗计划产生,目前的治疗计划系统优化算法是基于物理(即剂量)目标函数,治疗计划的生物剂量评估及其生物优化算法已在未来考虑之列。通常调强治疗多采用共面7野或9野等角度分布,无需避开直接对危及器官的照射,通过治疗计划系统的优化可满足特定剂量约束条件,在取得靶区剂量均匀性同时尽可能实现对正常组织的保护。,2、日常验证图像的获取,基于CTVISION系统的IN-ROOM CT可获得患者的验证CT图像,从而实现每分次治疗对患者位置的验证。通常验证CT扫描范围需小于原始计划CT影像范围,以降低不必要的辐射剂量
10、及减少治疗占机时间。但为了全程性地回顾各靶区及器官的受照剂量精确对比,采集验证CT影像条件需与原始计划CT影像相同。,3、ART评估和分析,(1)在线处理过程(2)离线处理过程,(1)在线处理过程,(1)在线处理过程:基于解剖结构信息,利用在线CT图像可实施患者的重新摆位。现代CT图像性能不仅可辨高对比度组织如骨,而且也可对软组织信息予以辨别。运用这些图像可实施患者摆位的合适调节,一些情况下对摆位偏差进行校正是有必要的。特别的,患者摆位中观察到的内部组织结构和所产生的变化,这也将有助于对分次间解剖学变化给予一定的补救。如靶区、危及器官、骨组织和外部轮廓均相对于另一器官发生移动时,可选择性对患者
11、重新予以摆位,最初计划的剂量分布将最能反映出所需摆位的信息。,局限性,考虑解剖学变化而实现对患者摆位的调节,其局限性在于实施可能位置变化的调节通常基于假设以刚性的患者(体)来实现的。解剖组织结构变化越多,也许越难以确保实现按照对患者原始治疗计划的实施。,可选方法,原理上,实现计划再设计也许会是最好的选择,但目前采用在线方式调整似乎是不太现实。因此,提议的一种可选方法就是对于每分次照射,在几次有效的计划变化之间选择出可利用的治疗前患者图像。该过程的关键好处就是,由于可考虑组织器官的变化,它提供了在线剂量重新优化的诸多优势,但所有必要的计算需治疗前来完成。,治疗计划的选择,假如能预测或至少适当地预
12、计患者解剖学变化的话,则预先可实行对治疗计划的准备。处理过程从几套轮廓和(或)PTV外扩边界的形成开始,计划的后续准备适用于这些外扩边界或解剖学变化。治疗时,执行与日常组织器官相吻合最好的计划。这种解决方法被称为日常选择的多种外扩边界优化法。,另一种选择,基于在线CT图像,还可以采用另一种方法实现在线的优化。这种方法的缺点之一就是需为调强放疗每天勾画出精确的器官轮廓。对于一定解剖部位而言,通过计划CT和日常验证CT图像之间所创建的扭曲形变可自动地形成靶区和危及器官轮廓。这些形变图可运用原始计划内轮廓,产生出日常器官轮廓。然而,许多病例中如前列腺癌,每天勾画出CTV靶区特别是头脚方向,这似乎是不
13、太容易。,理想放疗流程,在线性能和过程的有效性不仅提供了图像引导ART的可能性,而且潜在地提升临床放疗标准的再定义。假如优化算法计算快,且足够灵活地产生在线计划,日常“扫描、计划、再治疗”的理想放疗流程将最终成为可能。,(2)离线处理过程,应用每天图像可离线地确定每分次治疗中日常摆位和组织器官的改变,或一系列分次中影响靶区覆盖和正常组织避让情况。例如,在几分次后通过定义关联的特定患者所产生的运动级别及其组织器官改变,从而可创建出患者特定的轮廓。同时,对于肺部或头颈部肿瘤而言,日常图像有助于实施跟踪肿瘤的缩小,而几分次后该肿瘤缩小也许具有重要的临床意义。,实际剂量分布叠加,每分次治疗前所获取的图
14、像可用于勾画出新轮廓和必要的重新剂量计算。为了整体分析计划的需要,应从多分次角度对治疗剂量分布给予叠加,并将总剂量与所期待的计划剂量分布进行比较。,问题,假如患者是刚性躯体的话,这一点可能很容易实现,然后实施在物理空间内体素单元式剂量叠加。不幸的是,大多数病例中假定刚性躯体无法获得,因而增加基于每体素单元的生物学剂量将变得更为适当些。在这些病例中形成变形图及使用所谓可变形的剂量配准过程,这些均是必要的。,两步法,这应是一个两步法过程:首先,医用金属材料,临床应用最广泛的承力植入材料,由于有较高的强度和韧性,已成为骨和牙齿等硬组织修复和替换、心血管和软组织修复以及人工器官制造的主要材料。化学周期
15、表中的大部分金属不符合生物材料的要求,仅有小部分或经处理过的可用于临床。目前在临床使用的医用金属材料主要有不锈钢、钴基合金和钛基合金三大类,另外还有记忆合金、贵金属以及纯金属钽、铌和锆等。,医用金属材料,铁基耐蚀合金(一般由铁、铬、镍、钼、锰、硅组成),易加工、价格低廉。不锈钢的耐蚀性和屈服强度可以通过冷加工而提高,避免疲劳断裂。一般不锈钢制成多种形体,如针、钉、髓内针、齿冠、三棱钉等器件和人工假体而用于临床。,不锈钢,医用金属材料,含有较高的铬和钼,又称钴铬钼合金,具有极为优异的耐腐蚀性(比不锈钢高40倍)和耐磨性,综合力学性能和生物相容性良好,可通过精密铸造成形状复杂的精密修复体,有硬、中
16、、软三种类型。临床上主要用于人工关节(特别是人体中受载荷最大的髋关节)人工骨及骨科内处固定器件的制造齿科修复中的义齿,各种铸造冠、嵌体及固定桥的制造心血管外科及整形科等由于其价格较高,加工困难,应用尚不普及。,钴基材料,医用金属材料,临床应用广泛,其质轻、比强度高、力学性质接近人骨、强度远低于纯钛,耐疲劳、耐蚀性均优于不锈钢和钴基合金,且生物相容性和表面活性好,是较为理想的一种植入材料。抗断裂强度较低,耐磨性能不尽人意,加工困难。冶炼及成型工艺复杂,要求条件较高。主要用于:修补颅骨,制成钛网或钛箔用于修复脑膜和腹膜、人工骨、关节、牙和矫形物、人工心脏瓣膜支架、人工心脏部件和脑止血夹、口腔颌面矫
17、形颌修补、手术器械、医疗仪器颌人工假肢等。,钛基材料,医用金属材料,自1951年美国首次报道Au-Cd(金-镉)合金具有形状记忆效应以来,目前已发现有20多种记忆合金,其中以镍钛合金在临床上应用最大。它在不同的温度下表现为不同的金属结构相。如低温时为单斜结构相,高温时为立方体结构相,前者柔软可随意变形,如拉直式屈曲,而后者刚硬,可恢复原来的形状,并在形状恢复过程中产生较大的恢复力。,形状记忆合金(Shape Memory Alloys SMA),医用金属材料,贵金属:贵金属具有独特稳定的物理和化学性能、优异的加工特性、对人体组织无毒副作用、刺激小等优良的生物学性能。主要用于口腔科的齿科修复,也
18、可用于小型植入式电子医疗器械。纯金属:钽,铌,铬等,医用高分子材料,高分子材料是通过有方向的共价键结合而成的具有长链结构的有机材料。举例:聚乳酸,医用高分子材料:在医学上应用的、尤其能在机体内使用的高分子材料。,医用高分子材料,生物医学高分子材料(BiomedicalPolymer)生物医学高分子材料有天然的和合成的两种,发展最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用作注入式组织
19、修补材料。,医用高分子材料,人类机体的皮肤、肌肉、组织和器官都是由高分子化合物组成的,天然高分子生物材料是人类最早使用的医用材料之一。天然材料具有不可替代的优点:功能多样性、与机体的相容性、生物可降解性以及对其进行改性与复合和杂化等研究。,医用高分子材料,目前天然高分子生物材料主要有:天然蛋白质材料:胶原蛋白和纤维蛋白两种天然多糖类材料:纤维素、甲壳素和壳聚糖等,甲壳素缝线的电镜照片,医用高分子材料,甲壳素人工皮的电镜照片,医用高分子材料,合成高分子生物材料,合成高分子生物材料是指利用聚合方法制备的一类生物材料。由于合成高分子可以通过组成和结构控制而具有多种多样的物理和化学性质。医用高分子材料
20、科学是一门新兴的边缘学科,是生物医学工程的一个主要分支,合成高分子材料已成为制造各种人工器官、软硬组织修复体、医用粘结剂、缝合线、人造血液等的最主要的也是用量最大的生物材料。,医用高分子材料,医用高分子材料,医用高分子材料,无机生物医学材料,18世纪初开始应用。无毒、与生物体组织有良好的生物相容性、耐腐蚀。包括生物陶瓷、生物玻璃和碳素材料三大类,主要用于齿科、骨科修复和植入材料。基本都是脆性材料,容易破裂,发展方向应向开发复合(多相)生物材料以及在金属基体上加涂无机生物陶瓷涂层(薄膜)材料的方面引导。,医用高分子材料,杂化生物材料(Hybrid Biomaterials),是由活体材料和非活体
21、材料组成的复合体。它主要包括合成材料与生物体高分子材料或与细胞的杂化。从广义上讲,它包括所有的人工材料与生物体高分子和生理活性物质的杂化。例如:胶原/聚乙烯醇杂化材料,可增进组织细胞的增殖胶原/葡萄糖膜上被覆一层硅橡胶可作为人工皮使用杂化生物材料主要包括三类:用于组织结构材料的多糖类等生理活性物质杂化材料以固定酶为代表的功能性杂化材料杂化细胞,医用高分子材料,生物材料的范围,高度交叉:是生物、医学、化学和材料科学交叉形成的边缘学科。具体涉及到化学、物理学、高分子化学、高分子物理学、生物物理学、生物化学、生理学、药物学、基础与临床医学、工程学等很多学科。,生物材料的开发和研究已逐步转向复合型杂化
22、型功能型:指在生理环境下表现为特殊功能的材料,形状记忆材料,组织引导再生(Guided Tissue Regeneration,GTR)材料。智能型:指能模仿生命系统,同时具有感知和驱动双重功能的材料。感知、反馈和响应是该材料的三大要素。将高新技术、传感器和执行元件与传统材料结合在一起,赋予材料新的性能,使无生命的材料具有越来越多的生物特性。当前国内外生物材料开发研究的主要趋势,是致力于提高材料的生物相容性,致力于开发生物相容性好、更能适应人体生理需要的新材料。,生物材料的发展趋势,在杂化生物材料的基础上发展的。组织工程是近年来一门新兴的多学科交叉生命科学,目的是修复和再生受损组织或器官,帮助
23、病人恢复受损组织的功能,提高生活质量,解决器官短缺和免疫抑制等问题。组织工程的定义:它利用工程学和生命科学的基本原理,开发能恢复、维持或改善受损组织或器官功能的生物替代物。它综合了细胞生物学、工程学、材料学和临床医学领域,用活细胞和细胞外基质或骨架构造一个新的功能化组织或器官。组织工程领域的研究包括新型聚合物的合成、信号传导、培养细胞的基因调节和移植有关的免疫问题等。,组织工程,组织工程研究的三个方面是:(1)替换被分离除去的细胞或功能发挥所需要的细胞替代物;(2)产生或传递组织诱导物质,如生长因子、信号分子等;(3)结合细胞与生物材料,具体是在基质表面或内部接种细胞。组织工程产品:皮肤组织、
24、软骨组织、腱组织、骨组织、心脏瓣膜、肝组织等。,组织工程,纳米医学简介,人类进入纳米材料年代,纳米技术的起源,Richard P Feynman 现代最伟大的理论物理学家之一 1956年 诺贝尔物理学奖,1918-1988,A biological system can be exceedingly small.Many of the cells are very tiny,but they are very active;they manufacture various substances;they walk around;they wiggle;and they do all kinds
25、 of marvelous things-all on a very small scale.Also,they store information.Consider the possibility that we too can make a thing very small which does what we want-that we can manufacture an object that maneuvers at that level!,Theres Plenty of Room at the BottomBy Richard Feynman,American Physical
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图像 引导 自适应 放疗
链接地址:https://www.31ppt.com/p-6106719.html