功能高分子第一章.ppt
《功能高分子第一章.ppt》由会员分享,可在线阅读,更多相关《功能高分子第一章.ppt(124页珍藏版)》请在三一办公上搜索。
1、功能高分子材料,1、教学目的:通过课堂引导,课后查阅资料、阅读文献等手段获取功能材料的有关信息。通过对功能高分子材料的学习,了解高分子材料在工农业生产、高新科技领域和提高人民生活质量中的重要作用。2、教学重点:功能高分子材料的主要种类、代表物的重要性能和应用。3、教学难点:了解一些功能能高分子材料的制备方法、结构与性能之间的关系。,第一章 绪论,1.1 高分子材料科学的历史回顾高分子的概念始于20世纪20年代,但应用更早。1839年,美国人Goodyear发明硫化橡胶。1855年,英国人Parks用硝化纤维素与樟脑混合制得赛璐珞。1889年,法国人De Chardonnet(夏尔多内)发明人造
2、丝。1907年,酚醛树脂诞生。,第一章 绪论,1920年,德国人Staudinger发表了“论聚合”的论文,提出了高分子的概念,并预测了聚氯乙烯和聚甲基丙烯酸甲酯等聚合物的结构。1935年,Carothes发明尼龙66,1938年工业化。30年代,一系列烯烃类加聚物被合成出来并工业化,PVC(19271937),PVAc(1936),PMMA(19271931),PS(19341937),LDPE(1939)。自由基聚合发展。,第一章 绪论,高分子溶液理论在30年代建立,并成功测定了聚合物的分子量。Flory为此获得诺贝尔奖。40年代,二次大战促进了高分子材料的发展,一大批重要的橡胶和塑料被合
3、成出来。丁苯橡胶(1937),丁腈橡胶(1937),丁基橡胶(1940),有机氟材料(1943),ABS(1947),涤纶树脂(19401950)。50年代,Ziegler和Natta发明配位聚合催化剂,制得高密度PE和有规PP,低级烯烃得到利用。,第一章 绪论,1956年,美国人Szwarc发明活性阴离子聚合,开创了高分子结构设计的先河。50年后期至60年代,大量高分子工程材料问世。聚甲醛(1956),聚碳酸酯(1957),聚砜(1965),聚苯醚(1964),聚酰亚胺(1962)。60年代以后,特种高分子和功能高分子得到发展。特种高分子:高强度、耐高温、耐辐射、高频绝缘、半导体等。,第一章
4、 绪论,功能高分子:分离材料(离子交换树脂、分离膜 等)、导电高分子、感光高分子、高分子催化剂、高吸水性树脂、医用高分子、药用高分子、高分子液晶等。80年代以后,新的聚合方法和新结构的聚合物不断出现和发展。新的聚合方法:阳离子活性聚合、基团转移聚合、活性自由基聚合、等离子聚合等等;新结构的聚合物:新型嵌段共聚物、新型接枝共聚物、星状聚合物、树枝状聚合物、超支化聚合物、含C60聚合物等等。,第一章 绪论,1.2 基本概念功能高分子与高性能高分子性能:材料对外部作用的抵抗特性。例如,对外力的抵抗表现为材料的强度、模量等;对热的抵抗表现为耐热性;对光、电、化学药品的抵抗,则表现为材料的耐光性、绝缘性
5、、防腐蚀性等。,第一章 绪论,功能:指从外部向材料输入信号时,材料内部发生质和量的变化而产生输出的特性。例如,材料在受到外部光的输入时,材料可以输出电性能,称为材料的光电功能;材料在受到多种介质作用时,能有选择地分离出其中某些介质,称为材料的选择分离性。此外,如压电性、药物缓释放性等,都属于功能的范畴。,第一章 绪论,因此:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应的高分子材料。高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴。,第一章 绪论,特种高分子是相对于通用高分子而言的。通用高分子材料:应用面广量大,价格较低。根据其性质和用途可分为
6、五个大类:化学纤维、塑料、橡胶、油漆涂料、粘合剂。特种高分子材料:带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料的范畴。,第一章 绪论,从实用的角度看,对功能材料来说,人们着眼于它们所具有的独特的功能;而对高性能材料,人们关心的是它与通用材料在性能上的差异。特种高分子和功能高分子是目前高分子学科中发展最快、研究最活跃的新领域。,按照功能来分类:,1.2.1 化学功能,离子交换树脂、螯合树脂、感光性树脂、氧化还原树脂、高分子试剂、高分子催化剂、高分子增感剂、分解性高分子等,第一章 绪论,1.2 功能高分子材料的类型,第一章 绪论,1.2.3 复合功能,
7、高分子、高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等,第一章 绪论,按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料(2)电磁功能高分子材料(3)光功能高分子材料(4)生物医用高分子材料,从制造和结构的角度考虑:结构型功能高分子 复合型功能高分子,第一章 绪论,第一章 绪论,1.3 功能高分子材料的发展与展望1.3.1 功能高分子发展的背景(1)经济发展的需要 自从1920年施道丁格(H.Staudinger)建立大分子概念以来,高分子材料以惊人的速度得到发展。至20世纪60年代,高分子材料工业化已基本完善,解
8、决了人们的衣着、日用品和工业材料等需求。通用高分子和工程用高分子的世界总产量已超过几千万吨/年,特种高分子则为几十万吨/年。,第一章 绪论,1973年和1978年两次世界性的石油大危机,使原油价格猛涨。以石油为主要原料的高分子材料成本呈直线上升,商品市场陷入极为困难的处境。在这样的经济背景下,迫使人们试图用同样的原材料,去制备价值更高的产品。功能高分子在这种外部条件促使下迅速地发展了起来。从表1-1的数据可以看出,发展功能高分子材料可以获得较高的经济效益。,第一章 绪论,表1-1 各种高分子材料的产量和价格比*,*价格比以通用高分子为1计。,第一章 绪论,(2)科学技术发展的需求 8090年代
9、,科学技术有了迅速发展。能源、信息、电子和生命科学等领域的发展,对高分子材料提出了新的要求。即要求高分子材料具有迄今还不曾有过的高性能和高功能,甚至要求既具有高功能亦具有高性能的高分子材料。,第一章 绪论,新能源的要求。太阳能和氢将成为今后的主要能源。光电转换材料就成为太阳能利用的关键。硅材料已进入了实用阶段。然而,按现在的能量转换效率,对单晶硅的需要量实在太大。以日本为例,若利用太阳能达到当前日本电力的1,就需100 的单晶硅至少2.7万吨。这相当于日本目前单晶硅总产量的90倍。为此,人们把注意力转向可高效转换太阳能的功能高分子材料。如换能型高分子分离膜的利用。,第一章 绪论,交通和宇航技术
10、的要求。既高速又节约能源是交通运输和宇航事业迫切需要解决的课题。采用功能高分子材料,在一定程度上解决了该难题。就目前的成就来看,波音757,767飞机采用Kavlar增强材料(一种由高分子液晶纺丝而成的高强纤维增强的材料),可省油50。汽车工业采用高分子材料而实现轻型化,从而达到省油和高速的目的。,第一章 绪论,微电子技术的要求。高度集成化是微电子工业发展的趋势。存储容量将从目前的16K发展到256K。此时相应的电路细度仅为1.5m。因此,高功能的光致抗蚀材料(感光高分子)已成为微电子工业的关键材料之一。,第一章 绪论,生命科学的要求。人类对生命奥秘的探索,对建立一个洁净、安全的世界的渴望,对
11、征服癌症等疾病的努力,均对高分子材料提出了功能的要求。例如,生物分离介质的研制成功,使生命组成的各种组分能得以精细地分级,对生命科学的贡献将是十分重大的。可降解性高分子材料的问世,将大大减缓白色公害对人类的危害。,第一章 绪论,1.3.2 功能高分子的发展历程与展望 虽然特种与功能高分子材料的发展可以追述到很久以前,如光敏高分子材料和离子交换树脂都有很长的历史。但是作为一门独立的完整的学科,功能高分子是从20世纪80年代中后期开始发展的。,第一章 绪论,最早的功能高分子可追述到1935年离子交换树脂的发明。20世纪50年代,美国人开发了感光高分子用于印刷工业,后来又发展到电子工业和微电子工业。
12、1957年发现了聚乙烯基咔唑的光电导性,打破了多年来认为高分子材料只能是绝缘体的观念。1966年little提出了超导高分子模型,预计了高分子材料超导和高温超导的可能性,随后在1975年发现了聚氮化硫的超导性。,第一章 绪论,1993年,俄罗斯科学家报道了在经过长期氧化的聚丙烯体系中发现了室温超导体,这是迄今为止唯一报道的超导性有机高分子。20世纪80年代,高分子传感器、人工脏器、高分子分离膜等技术得到快速发展。1991年发现了尼龙11的铁电性,1994年塑料柔性太阳能电池在美国阿尔贡实验室研制成功,1997年发现聚乙炔经过掺杂具有金属导电性,导致了聚苯胺、聚吡咯等一系列导电高分子的问世。这一
13、切多反映了功能高分子日新月异的发展。,第一章 绪论,其中从20世纪50年代发展起来的光敏高分子化学,在光聚合、光交联、光降解、荧光以及光导机理的研究方面都取得了重大突破,特别在过去20多年中有了飞快发展,并在工业上得到广泛应用。比如光敏涂料、光致抗蚀剂、光稳定剂、光可降解材料、光刻胶、感光性树脂、以及光致发光和光致变色高分子材料都已经工业化。近年来高分子非线性光学材料也取得了突破性的进展。,第一章 绪论,反应型高分子是在有机合成和生物化学领域的重要成果,已经开发出众多新型高分子试剂和高分子催化剂应用到科研和生产过程中,在提高合成反应的选择性、简化工艺过程以及化工过程的绿色化方面做出了贡献。更重
14、要的是由此发展而来的固相合成方法和固定化酶技术开创了有机合成机械化、自动化、有机反应定向化的新时代,在分子生物学研究方面起到了关键性作用。,第一章 绪论,电活性高分子材料的发展导致了导电聚合物,聚合物电解质,聚合物电极的出现。此外超导、电致发光、电致变色聚合物也是近年来的重要研究成果,其中以电致发光材料制作的彩色显示器已经被日本和美国公司研制成功,有望成为新一代显示器件。此外众多化学传感器和分子电子器件的发明也得益于电活性聚合物和修饰电极技术的发展。,第一章 绪论,高分子分离膜材料与分离技术的发展在复杂体系的分离技术方面独辟蹊径,开辟了气体分离、苦咸水脱盐、液体消毒等快速、简便、低耗的新型分离
15、替代技术,也为电化学工业和医药工业提供了新型选择性透过和缓释材料。目前高分子分离膜在海水淡化方面已经成为主角,已经拥有制备18万吨/日纯水设备的能力。,第一章 绪论,医药用功能高分子是目前发展非常迅速的一个领域,高分子药物、高分子人工组织器官、高分子医用材料在定向给药、器官替代、整形外科和拓展治疗范围方面做出了相当大的贡献。,第一章 绪论,特种与功能高分子材料是一门涉及范围广泛,与众多学科相关的新兴边缘学科,涉及内容包括有机化学、无机化学、光学、电学、结构化学、生物化学、电子学、甚至医学等众多学科,是目前国内外异常活跃的一个研究领域。可以说,特种与功能高分子材料在高分子科学中的地位,相当于精细
16、化工在化工领域内的地位。因此也有人称特种与功能高分子为精细高分子,其内涵指其产品的产量小,产值高,制造工艺复杂。,第一章 绪论,特种与功能高分子材料之所以能成为国内外材料学科的重要研究热点之一,最主要的原因在于它们具有独特的“性能”和“功能”,可用于替代其他功能材料,并提高或改进其性能,使其成为具有全新性质的功能材料。可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。,2000年10月10日,瑞典皇家科学院宣布了2000年诺贝尔化学奖获得者,美国加利福尼亚大学的物理学家艾伦.J.黑格教授、美国宾夕法尼亚大学的化学家艾伦.G.马克迪亚米德教授和日本筑波大
17、学的化学家白川英树教授,因为他们发现了导电塑料。,第一章 绪论,1.4 几种重要的功能高分子材料简介,几种导电高分子的掺杂情况,复合型导电高分子材料是以有机高分子材料为基体,加入一定数量的导电物质(如炭黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等)组合而成。该类材料兼有高分子材料的易加工特性和金属的导电性。与金属相比较,导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。,复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子与基体高分子进行共混;另一种则是将各种导电填料填充到基体高分子中。,炭黑是天然的导电材料,其体积电阻率约为0.1
18、100cm-1。它不仅原料易得,导电性持久稳定,而且可以大幅度调整复合材料的电阻率(1108cm-1)。由炭黑填充制成的复合型导电高分子是目前用途最广、用量最大的一种导电高分子材料。金属纤维的填充量对导电性能的影响规律与炭黑填充的情形相类似。但由于纤维状填料的接触几率更大,因此在填充量很少的情况下便可获得较高的导电率。,结构型导电高分子是指高分子材料本身或经少量掺杂后具有导电性的高分子物质,一般由电子高度离域的共轭聚合物经过适当电子给体或受体掺杂后制得。,离子型导电高分子通常又叫高分子固体电解质,其导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料,导电时的载流
19、子是电子(或空穴),这类材料是目前世界上导电高分子材料研究开发的重点。,导电高分子是由含电子的共轭高聚物通过化学或电化学掺杂使其由绝缘体转变为导体。,(1)通过控制掺杂度,导电高分子的室温电导率可在绝缘体-半导体-金属态范围内变化。目前最高的室温电导率可达105S/cm,它可与铜的电导率相比,而重量仅为铜的1/12;,与金属和半导体相比较,导电高分子的电学性能具有如下特点:,(2)导电高分子可拉伸取向。沿拉伸方向电导率随拉伸度而增加,而垂直拉伸方向的电导率基本不变,呈现强的电导各向异性;(3)尽管导电高分子的室温电导率可达金属态,但它的电导率-温度依赖性不呈现金属特性,而服从半导体特性;(4)
20、导电高分子的载流子既不同于金属的自由电子,也不同于半导体的电子或空穴,而是用孤子、极化子和双极化子概念描述。,对于导电高分子来说,掺杂的概念不同于常见的无机半导体。以单晶硅为例,每个硅原子有四个价电子,若晶格中有一个硅原子被一个仅具有三个价电子的硼原子取代后,由于硼原子是缺电子的,无论硅与硼之间是否发生电子转移,在晶格中都有一个正的“空穴”,这即所谓p掺杂;反之,若晶格中有一个硅原子被一个具有五个价电子的磷原子取代后,该格点上就比别的格点多出一个电子,这即所谓n掺杂。,导电高分子的掺杂则是通过氧化还原反应实现的。掺杂的方式主要有两种:化学掺杂法,即通过加入第二种不同氧化态的物质,使之与聚合物接
21、触并反应;电化学掺杂法,即聚合物作为电极,掺杂剂作为电解质,在通电条件下使聚合物链发生氧化还原反应而直接改变其荷电状态。前者简单易行,有利于了解掺杂前后聚合物结构与性能的变化;后者时间短,效率高,易于得到导电聚合物薄膜。除此之外,还有诸如酸碱化学掺杂、光掺杂、电荷注入掺杂等方法。,掺杂对于电子导电聚合物导电能力的改变具有非常重要的意义,其导电性能往往会增加几个数量级。掺杂过程中,掺杂剂分子插入聚合物分子链中,通过两者之间氧化还原反应完成电子转移过程,p型掺杂剂在掺杂反应中作为电子的接受体。卤素:Cl2,Br2,I2,IBr等;路易斯酸:PF5,AsF5,BF3,SbF5等;质子酸:HF,HCl
22、,HNO3,ClSO3H等;过渡金属卤化物:NbF5,TaF5,MoF5,ZrCl4,TeI4等;过渡金属化合物:四氰基乙烯(TCNE),四氰基对苯醌二甲烷(TCNQ),四氯对苯醌、二氯二氰代苯醌(DDQ)等。,n型掺杂剂在掺杂反应中作为电子的给予体。常见的有碱金属:Li,Na,K等;在电化学掺杂中常用R4N+,R4P+(R=CH3,C6H5等),p型掺杂是由于导电高分子的部分氧化,即:x 聚合物(聚合物+y)x+(xy)e-n型掺杂则是由于导电高分子的部分还原,即:x聚合物+(xy)e-(聚合物-y)x,上述过程可通过电化学或化学方法完成。为了维持电中性,p型掺杂和n型掺杂都必须提供一个对离
23、子,如(聚合物+y)x+(xy)A-(聚合物+y)A-yx(聚合物-y)x+(xy)M+M+y(聚合物-y)x,导电高分子具有下列特点:(1)与金属相比,重量轻;(2)成型性好,用浇铸、模压等比较简易的方法就能使其纤维化、薄膜化,制成涂料,以及得到人们所需要的其他形状,而且易于加工成轻质的大面积的可挠性薄膜,以其大的面积/厚度比来补偿它的电导率较低的不足;(3)易于合成和进行分子设计、材料设计,从而能较好地满足科学技术对这类功能材料提出的各种要求;(4)原料来源广,应用:,电磁波屏蔽 随着各种商用和家用电子产品数量的迅速增加,电磁波干扰已成为一种新的社会公害,对电子仪器、设备进行电磁波屏蔽是极
24、为重要的。直接使用混有导电高分子材料的塑料做外壳,因其成形与屏蔽一体,较其他方法,如使用太重又不方便的金属板作外壳、在塑料外壳上涂一层金属或含有碳粉、碳纤维的导电涂料、通过电镀金属将外壳覆盖等等更为方便。,电子元件(二极管、晶体管、场效应晶体管等)导电高分子材料在掺杂状态具有半导体或金属的电导性,去掺杂时表现为绝缘体或半导体,而原来禁带宽度较大的仍为绝缘体,所以可以利用这些性质来制作各种类型的元件成为二极管、晶体管及场效应晶体管等具有非线性电流-电压特性的电子元件。,微波吸收材料 由于可以对导电高分子的厚度、密度和导电性进行调整,从而可以调整微波反射系数、吸收系数,其吸收系数可达105cm-1
25、。导电高分子作为微波吸收材料,其薄膜重量轻、柔性好,可作任何设备(包括飞机)的蒙皮。,隐身材料 所谓隐身材料是指能够减少军事目标的雷达特征、红外特征、光电特征及目视特征的材料的总称。由于雷达是军事目标侦查的主要手段,所以雷达波吸收材料的研制是关键。自从导电聚合物的出现,其作为新型的雷达波吸收材料成为研究的热点。美国、日本、法国、印度及中国相继开展了导电聚合物雷达波吸收材料的研制,尤其是美国空军投资开发的高聚物雷达波吸收材料,为隐身战斗机和侦察机制造“灵巧蒙皮”的设想和计划奠定了基础,进一步刺激了导电聚合物雷达隐身技术的发展。,可降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 功能 高分子 第一章
链接地址:https://www.31ppt.com/p-6100649.html