分析力学基础第二类拉格朗日方程.ppt
《分析力学基础第二类拉格朗日方程.ppt》由会员分享,可在线阅读,更多相关《分析力学基础第二类拉格朗日方程.ppt(26页珍藏版)》请在三一办公上搜索。
1、M1-1,5 第二类拉格朗日方程,质点 i 的虚位移,将上式代入动力学普遍方程(3-15)式:,因qk是独立的,所以,注意广义力可得,1.基本形式的拉格朗日方程,M1-2,上式应用起来很不方便。我们要作变换,上式中的第二项与广义力相对应,称为广义惯性力。,注意到广义力可得,拉格朗日改造动力学普遍方程的第一步:就是把主动力的虚功改造为广义力虚功。,拉格朗日改造动力学普遍方程的第二步:就是改造惯性虚功项,使之与系统的动能的变化联系起来。,M1-3,变换,2.,3.,1.,M1-4,可得,由,为理想完整系的拉格朗日方程,方程数等于质点系的自由度数。其中:,主动力的广义力,可以是力、力矩或其他力学量(
2、不包含约束反力),体系相对惯性系的动能,广义动量,可为线动量、角动量或其他物理量,M1-5,2.保守体系的拉格朗日方程,M1-6,2.保守体系的拉格朗日方程,将Qk代入拉格朗日方程式,得,想一想:上式的成立、适用条件是什么?,保守体系的拉格朗日方程为:,为拉格朗日函数(动势),是表征体系约束运动状态和相互作用等性质的特征函数。,势能V不包含广义速度,引入拉格朗日函数,M1-7,3.对拉格朗日方程的评价,(1)拉氏方程的特点(优点):,是一个二阶微分方程组,方程个数与体系的自由度相同。形式简洁、结构紧凑。而且无论选取什么参数作广义坐标,方程形式不变。,方程中不出现约束反力,因而在建立体系的方程时
3、,只需分析已知的主动力,不必考虑未知的约束反力。体系越复杂,约束条件越多,自由度越少,方程个数也越少,问题也就越简单。,拉氏方程是从能量的角度来描述动力学规律的,能量是整个物理学的基本物理量而且是标量,因此拉氏方程为把力学规律推广到其他物理学领域开辟了可能性,成为力学与其他物理学分支相联系的桥梁。,M1-8,3.对拉格朗日方程的评价,(2)拉氏方程的价值,拉氏方程在理论上、方法上、形式上和应用上用高度统一的规律,描述了力学系统的动力学规律,为解决体系的动力学问题提供了统一的程序化的方法,不仅在力学范畴有重要的理论意义和实用价值,而且为研究近代物理学提供了必要的物理思想和数学技巧。,M1-9,应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分析 力学 基础 第二类拉格朗日方程
链接地址:https://www.31ppt.com/p-6094788.html