代谢调节与代谢工程.ppt
《代谢调节与代谢工程.ppt》由会员分享,可在线阅读,更多相关《代谢调节与代谢工程.ppt(47页珍藏版)》请在三一办公上搜索。
1、代谢调节与代谢工程,(1).直线式代谢途径中的反馈抑制:苏氨酸脱氨酶苏氨酸-酮丁酸异亮氨酸反馈抑制其它实例:谷氨酸棒杆菌的精氨酸合成(2).分支代谢途径中的反馈抑制:在分支代谢途径中,反馈抑制的情况较为复杂,为了避免在一个分支上的产物过多时不致同时影响另一分支上产物的供应,微生物发展出多种调节方式。主要有:同功酶的调节,顺序反馈,协同反馈,积累反馈调节等。,3.2.3 反馈抑制的类型,代谢调节与代谢工程,(1)同功酶调节isoenzyme,定义:催化相同的生化反应,而酶分子结构有差别的一组酶。意义:在一个分支代谢途径中,如果在分支点以前的一个较早的反应是由几个同功酶催化时,则分支代谢的几个最终
2、产物往往分别对这几个同功酶发生抑制作用。某一产物过量仅抑制相应酶活,对其他产物没影响。举例:大肠杆菌的天冬氨酸族氨基酸合成的调节,代谢调节与代谢工程,代谢调节与代谢工程,(2)协同反馈抑制,定义:分支代谢途径中几个末端产物同时过量时才能抑制共同途径中的第一个酶的一种反馈调节方式。举例:谷氨酸棒杆菌(Corynebacterium glutamicum)多粘芽孢杆菌(Bacillus polymyxa)天冬氨酸族氨基酸合成中天冬氨酸激酶受赖氨酸和苏氨酸的协同反馈抑制和阻遏。,代谢调节与代谢工程,天冬氨酸 E,R 4-磷酸天冬氨酸E天冬氨酸半醛E,R E二氢吡啶二羧酸 同型丝氨酸同型丝氨酸磷酸E,
3、R R O-琥珀酰同型丝氨酸 苏氨酸 E,R六氢吡啶二羧酸 胱硫醚 2-酮丁酸 R 二氨基庚二酸同型半胱氨酸 R 赖氨酸 甲硫氨酸 异亮氨酸,天冬氨酸族(谷氨酸棒杆菌),代谢调节与代谢工程,合作反馈抑制,定义:两种末端产物同时存在时,共同的反馈抑制作用大于二者单独作用之和。举例:在嘌呤核苷酸合成中,磷酸核糖焦磷酸酶受AMP和GMP(和IMP)的合作反馈抑制,二者共同存在时,可以完全抑制该酶的活性。而二者单独过量时,分别抑制其活性的70%和10%。,代谢调节与代谢工程,(3)积累反馈抑制,定义:每一分支途径末端产物按一定百分比单独抑制共同途径中前面的酶,所以当几种末端产物共同存在时它们的抑制作用
4、是积累的,各末端产物之间既无协同效应,亦无拮抗作用。,代谢调节与代谢工程,Try 16%CTP 14%氨甲酰磷酸 13%AMP 41%,积累反馈抑制E.coli谷氨酰胺合成酶的调节,代谢调节与代谢工程,(4)顺序反馈抑制,一种终产物的积累,导致前一中间产物的积累,通过后者反馈抑制合成途径关键酶的活性,使合成终止。举例:枯草芽孢杆菌芳香族氨基酸合成的调节,代谢调节与代谢工程,分支途径上游的某个酶受到另一条分支途径的终产物,甚至于本分支途径几乎不相关的代谢中间物的抑制或激活,使酶的活力受到调节,此即代谢互锁。,4.1.8 代谢互锁,代谢调节与代谢工程,在分支合成途径中,分支点后的两种酶竞争同一种底
5、物,如AMP与GMP,Thr与Lys、Met,由于两种酶对底物的Km值(即对底物的亲和力)不同,故两条支路的一条优先合成。,优先合成,代谢调节与代谢工程,避开微生物固有代谢调节,过量生产代谢产物,工业发酵的目的:大量积累人们所需要的微生物代谢产物。代谢的人工控制:人为地打破微生物的代谢控制体系,使代谢朝着人们希望的方向进行。人工控制代谢的手段:改变微生物遗传特性(遗传学方法);控制发酵条件(生物化学方法);改变细胞膜透性;,代谢调节与代谢工程,工业发酵的目的大量地积累人们所需要的微生物代谢产物。,在正常生理条件下,微生物通过其代谢调节系统吸收利用营养物质用于合成细胞结构,进行生长和繁殖,它们通
6、常不浪费原料和能量,也不积累中间代谢产物,代谢的人工控制,人为地打破微生物的代谢控制体系,就有可能使代谢朝着人们希望的方向进行,代谢调节与代谢工程,(1)对于直线式代谢途径:选育营养缺陷性突变株只能积累中间代谢产物 A a B b C c D d E,1)营养缺陷型菌株的应用,末端产物E对生长乃是必需的,所以,应在培养基中限量供给E,使之足以维持菌株生长,但又不至于造成反馈调节(阻遏或抑制),这样才能有利于菌株积累中间产物C。,遗传学方法,代谢调节与代谢工程,(2)分支代谢途径:情况较复杂,可利用营养缺陷性克服协同或累加反馈抑制积累末端产物,亦可利用双重缺陷发酵生产中间产物,代谢调节与代谢工程
7、,各图成立的条件:1.限量添加E;2.限量添加E;3.限量添加E和G;4.限量添加E和G;5.限量添加I,“”表示营养缺陷突变位置;“”表示反馈调节解除,要根据其不同反馈控制机制,代谢调节与代谢工程,谷氨酸棒杆菌的代谢调节与赖氨酸生产 E:表示反馈抑制;R:表示反馈阻遏,高丝氨酸脱氢酶(HSDH),天冬氨酸激酶(AK),赖氨酸生产菌:,高丝氨酸缺陷型,代谢调节与代谢工程,分支途径赖氨酸发酵(谷氨酸棒杆菌的代谢调控),代谢调节与代谢工程,分支途径肌苷酸发酵(IMP合成途径的代谢调控),调控理论的实践应用,代谢调节与代谢工程,P124表3-12用营养缺陷型菌株生产的各种氨基酸,代谢调节与代谢工程,
8、2)抗反馈控制突变株的应用,抗反馈控制突变株是指对反馈抑制不敏感或对阻遏有抗性,或两者兼有之的菌株。抗反馈控制突变株可以从终产物结构类似物抗性突变株和营养缺陷性回复突变株中获得。获得方法及其原理:,代谢调节与代谢工程,代谢调节与代谢工程,营养缺陷型回复突变株,调节酶的变构特性是由其结构基因决定的,如果调节酶的基因发生突变而失活,则有两种可能性:,一是催化亚基和调节亚基的基因均发生突变;,另一种可能仅仅是催化亚基发生突变。,一是催化亚基和调节亚基恢复到第一次突变前的活性水平。,如果前者发生回复突变,则又有两种可能性,另一种是催化亚基得以恢复,而调节亚基丧失了调节的功能。,营养缺陷型回复突变,代谢
9、调节与代谢工程,3)选育组成型突变株和超产突变株,如果调节基因发生突变,以至产生无效的阻遏物而不能和操纵基因结合,或操纵基因突变,从而造成结构基因不受控制的转录,酶 的生成将不再需要诱导剂或不再被末端产物或分解代谢物阻遏,这样的突变株称为 组成型突变株。少数情况下,组成型突变株可产生大量的、比亲本高的多的酶,这种突变株称为超产突变株。,代谢调节与代谢工程,组成型突变株,结构基因不受控制地转录,酶的生成将不再需要诱导剂或不再被末端产物或分解代谢物阻遏。,调节基因发生突变,产生无效的阻遏物而不能与操纵基因结合,操纵基因突变,突变操纵基因不能与阻遏物结合,组成型突变,代谢调节与代谢工程,DA B C
10、 E F,2.生物化学方法,1.添加前体绕过反馈控制点:亦能使某种代谢产物大量产生,(-),(-),(-),2.添加诱导剂:从提高诱导酶合成量来说,最好的诱导剂往往不是该酶的底物,而是底物的衍生物。3.发酵与分离过程耦合:4.控制发酵的培养基成分:,代谢调节与代谢工程,控制细胞膜渗透性,使胞内的代谢产物迅速渗漏出去,解除末端产物的反馈抑制。(1).用生理学手段 直接抑制膜的合成或使膜受缺损 如:在Glu发酵中把生物素浓度控制在亚适量可大量分泌Glu;控制生物素的含量可改变细胞膜的成分,进而改变膜透性;当培养液中生物素含量较高时采用适量添加青霉素的方法;再如:产氨短杆菌的核苷酸发酵中控制因素是M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代谢 调节 工程
链接地址:https://www.31ppt.com/p-6079958.html