《运筹学》对偶理论.ppt
《《运筹学》对偶理论.ppt》由会员分享,可在线阅读,更多相关《《运筹学》对偶理论.ppt(73页珍藏版)》请在三一办公上搜索。
1、第3章 线性规划对偶理论及其应用,线性规划的对偶模型对偶性质对偶问题的经济解释影子价格对偶单纯形法,本章主要内容:,线性规划的对偶模型,设某工厂生产两种产品甲和乙,生产中需4种设备按A,B,C,D顺序加工,每件产品加工所需的机时数、每件产品的利润值及每种设备的可利用机时数列于下表:,产品数据表,问:充分利用设备机时,工厂应生产甲和乙型产品各多少件才能获得最大利润?,1.对偶问题的现实来源,线性规划的对偶模型,解:设甲、乙型产品各生产x1及x2件,则数学模型为:,反过来问:若厂长决定不生产甲和乙型产品,决定出租机器用于接受外加工,只收加工费,那么种机器的机时如何定价才是最佳决策?,线性规划的对偶
2、模型,在市场竞争的时代,厂长的最佳决策显然应符合两条:(1)不吃亏原则。即机时定价所赚利润不能低于加工甲、乙型产品所获利润。由此原则,便构成了新规划的不等式约束条件。(2)竞争性原则。即在上述不吃亏原则下,尽量降低机时总收费,以便争取更多用户。,设A、B、C、D设备的机时价分别为y1、y2、y3、y4,则新的线性规划数学模型为:,线性规划的对偶模型,把同种问题的两种提法所获得的数学模型用表2表示,将会发现一个有趣的现象。,原问题与对偶问题对比表,线性规划的对偶模型,2.原问题与对偶问题的对应关系,原问题(对偶问题),对偶问题(原问题),线性规划的对偶模型,(1)对称形式,特点:目标函数求极大值
3、时,所有约束条件为号,变量非负;目标函数求极小值时,所有约束条件为号,变量非负.,已知P,写出D,线性规划的对偶模型,例.写出线性规划问题的对偶问题,解:首先将原问题变形为对称形式,线性规划的对偶模型,线性规划的对偶模型,(2)非对称型对偶问题,若给出的线性规划不是对称形式,可以先化成对称形式再写对偶问题。也可直接写出非对称形式的对偶问题。,线性规划的对偶模型,线性规划的对偶模型,例2 写出下列线性规划问题的对偶问题.,解:原问题的对偶问题为,资源定价问题(LP2),比较,原问题(生产计划),对偶问题(资源定价),规范形式的线性规划问题,原问题(LP),对偶问题(DLP),规范形式,最大化问题
4、:,约束条件全为型,决策变量全部非负,最小化问题:,约束条件全为型,决策变量全部非负,规范形式的对偶关系,原问题,对偶问题,目标函数:max CX,目标函数:minbY,m个约束条件:AX b,m个决策变量:Y 0,n个决策变量:X 0,n个约束条件:AY C,原问题,对偶问题,非规范形式的对偶关系,对非规范形式的对偶关系,只需对上述表进行相应修改即可:,例如对于一个最小化问题,若某个决策变量yi 0,则期对偶的约束条件为型的;若其某个约束条件是型,则其对应的对偶变量是非正的.,非规范形式线性规划的对偶问题,1 变量取值范围不符合非负要求的情况,非规范形式线性规划的对偶问题,2 约束方程不是“
5、”的情况,总结,约束条件对变量,变量对约束条件;正常对正常,不正常对不正常;变量正常是非负,约束条件正常看目标(max,min)。,课堂作业:求解下面线性规划的对偶规划,LP,DLP,对偶性质,例3 分别求解下列2个互为对偶关系的线性规划问题,分别用单纯形法求解上述2个规划问题,得到最终单纯形表如下表:,对偶性质,原问题最优表,对偶问题最优表,对偶性质,原问题与其对偶问题的变量与解的对应关系:在单纯形表中,原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量。,对偶性质,性质1 对称性定理:对偶问题的对偶是原问题,对偶性质,性质2 弱对偶原理(弱对偶性):设 和 分别是问题(
6、P)和(D)的可行解,则必有,推论1:原问题任一可行解的目标函数值是其对偶问题目标函数值的下届;反之,对偶问题任意可行解的目标函数值是其原问题目标函数值的上界。,推论2:在一对对偶问题(P)和(D)中,若其中一个问题可行但目标函数无界,则另一个问题无可行解;反之不成立。这也是对偶问题的无界性。,对偶性质,推论3:在一对对偶问题(P)和(D)中,若一个可行(如P),而另一个不可行(如D),则该可行的问题目标函数值无界。,性质3 最优性定理:如果 是原问题的可行解,是其对偶问题的可行解,并且:,则 是原问题的最优解,是其对偶问题的最优解。,对偶性质,性质4 强对偶性:若原问题及其对偶问题均具有可行
7、解,则两者均具有最优解,且它们最优解的目标函数值相等。,还可推出另一结论:若(LP)与(DP)都有可行解,则两者都有最优解,若一个问题无最优解,则另一问题也无最优解。,性质5 互补松弛性:设X0和Y0分别是P问题 和 D问题 的可行解,则它们分别是最优解的充要条件是:,其中:Xs、Ys为松弛变量,约束 条件 也分为两种情况:,约束条件比较松;,约束条件比较紧;,yi 0,分为两种情况:yi0,约束条件比较松;yi=0,约束条件比较紧;,互补松弛定理的解释,变量同其对偶问题的约束方程之间至多只能够有一个取松弛的情况,当其中一个取松弛的情况时,另外一个比较紧,即取严格等号。,已知下面的LP1和LP
8、2为一组对偶规划,且已知LP1的最优解为X=(1.5,1)。试运用互补松弛定理求出对偶问题的最优解Y。,原问题(LP1),对偶问题(LP2),解:由X=(1.5,1)得,联立求解得:,对偶性质,性质5的应用:该性质给出了已知一个问题最优解求另一个问题最优解的方法,即已知Y求X或已知X求Y,互补松弛条件,由于变量都非负,要使求和式等于零,则必定每一分量为零,因而有下列关系:若Y0,则Xs必为0;若X0,则Ys必为0利用上述关系,建立对偶问题(或原问题)的约束线性方程组,方程组的解即为最优解。,对偶性质,例4 已知线性规划,的最优解是X=(6,2,0)T,求其对偶问题的最优解Y。,解:写出原问题的
9、对偶问题,即,标准化,对偶性质,设对偶问题最优解为Y(y1,y2),由互补松弛性定理可知,X和 Y满足:,即:,因为X10,X20,所以对偶问题的第一、二个约束的松弛变量等于零,即y30,y40,带入方程中:,解此线性方程组得y1=1,y2=1,从而对偶问题的最优解为:Y=(1,1),最优值w=26。,对偶性质,例5 已知线性规划,的对偶问题的最优解为Y=(0,-2),求原问题的最优解。,解:对偶问题是,标准化,对偶性质,设对偶问题最优解为X(x1,x2,x3)T,由互补松弛性定理可知,X和 Y满足:,将Y带入由方程可知,y3y50,y41。,y2=-20 x50又y4=10 x20,将x2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 对偶 理论
链接地址:https://www.31ppt.com/p-6078279.html