《勾股定理的应用-用方程思想解决问题》课例课件.ppt
《《勾股定理的应用-用方程思想解决问题》课例课件.ppt》由会员分享,可在线阅读,更多相关《《勾股定理的应用-用方程思想解决问题》课例课件.ppt(44页珍藏版)》请在三一办公上搜索。
1、课例分析:,勾股定理的应用-运用方程思想解决问题,一教学背景分析,本节课是勾股定理的应用的第三节课,也是第18.1节的最后一节课,在此之前,学生已学习了勾股定理的内容和证明方法,以及勾股定理的简单应用,本节课进一步运用方程思想解决有关勾股定理的问题.,一教学背景分析,勾股定理是几何中最重要的定理之一,它也是直角三角形的一条重要性质.同时由勾股定理及其逆定理,能够把形的特征转化成数量关系,它把形与数密切地联系起来,因此,它在理论上也有重要地位.方程思想是初中数学中一种基本的数学思想方法.方程可以清晰的反应已知量和未知量之间的关系,架起沟通已知量和未知量的桥梁.本节课为后续进一步学习运用方程思想解
2、决问题起着铺垫作用.,知识技能:1.掌握勾股定理的内容,进一步利用勾股定理解决问题;2.经历对几何图形的观察、分析,初步掌握利用“割”、“补”图形构造直角三角形的方法;3.会运用方程的思想解决与勾股定理有关的问题.,二教学目标,数学思考:1.通过用代数式、方程等表述数量关系的过程,体会模型的思想,建立符号意识;2.在观察、实验、猜想、证明等数学活动中,发展演绎推理能力,清晰地表述自己的想法;3.学会独立思考,体会方程思想、数形结合思想、转化思想、建模思想.,二教学目标,问题解决:1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识
3、,提高实践能力;2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法;3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论.,二教学目标,情感态度:1.在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心;2.敢于发表自己的想法、勇于质疑、敢于创新,养成认真勤奋,独立思考,合作交流,反思质疑等学习习惯,形成严谨求实的科学态度.,二教学目标,运用方程思想解决与勾股定理有关的问题.,当几何图形中没有直角三角形时,通过“割”、“补”图形构造直角三角形,利用勾股定理解决问题.,教学重点:,教学难点:,两条主线:,
4、1.运用方程思想解决有关勾股定理的问题.,三教学过程设计,三教学过程设计,(一)复习,提问学生回答勾股定理内容,其他同学补充.,教师强调:勾股定理前提条件和结论.,(二)例题,【问题1】如何在实际问题中,利用勾股定理解决问题呢?,例1.有一个水池,水面是一个边长为l0尺的正方形.在水池正中央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?,例1.有一个水池,水面是一个边长为l0尺的正方形.在水池正中央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别
5、是多少?,设计意图:,1.能利用勾股定理解决简单的实际问题;,2.通过用代数式、方程等表述数量关系的过程,体会模型的思想,建立符号意识;,3.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力;,4.本题是我国古代数学著作九章算术中的问题,展现我国古人在勾股定理应用研究方面的成果.,解决与勾股定理有关的实际问题时,先要抽象出几何图形,从中找出直角三角形,再设未知数,找出各边的数量关系,最后根据勾股定理求解.,小结:,这是我国古代数学著作九章算术中的一个问题.原文是:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐
6、,水深、葭长各几何?其中的丈、尺是长度单位,1丈=10尺.,九章算术是中国古代第一部数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,九章算术在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。要注意的是九章算术没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。,例1.有一个水池,水面是一个边长为l0尺的正方形.在水池正中央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面
7、.水的深度与这根芦苇的长度分别是多少?,注意:,1.本题的突破口是找到直角三角形;,2.题目中“把这根芦苇拉向水池一边的中点”从图中看不出来,可以给学生画一个俯视图或者立体图形;,3.介绍本题是我国古代数学著作九章算术中的一个问题.它是我国古人在勾股定理应用研究方面的成果,要让学生充满民族自豪感.,【问题2】如果一道题目中有多个直角三角形,我们如何选择在哪个直角三角形中利用勾股定理求解呢?,例2.已知矩形ABCD沿直线BD折叠,使点C落在同一平面内C处,B C与AD交于点E,AD=8,AB=4,求DE的长.,例2.已知矩形ABCD沿直线BD折叠,使点C落在同一平面内C处,B C与AD交于点E,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理的应用-用方程思想解决问题 勾股定理 应用 方程 思想 解决问题 课件
链接地址:https://www.31ppt.com/p-6075262.html