《信息光学》第四章章透镜的位相调制和傅里叶.ppt
《《信息光学》第四章章透镜的位相调制和傅里叶.ppt》由会员分享,可在线阅读,更多相关《《信息光学》第四章章透镜的位相调制和傅里叶.ppt(28页珍藏版)》请在三一办公上搜索。
1、本章主要内容,1、透镜的位相调制作用2、透镜的傅里叶变换性质3、光学频谱分析系统,0、序 言,透镜是一种非常重要的光学元件,其主要功能包括:成像和傅里叶变换。1)透镜的成像功能,2)透镜的傅里叶变换功能(夫琅和费衍射),Question:透镜为什么具有这样的功能?,1、透镜的位相调制作用,1.1 透镜对入射波前的作用,透镜的复振幅透过率:,在旁轴近似下,忽略透镜对光波振幅的影响,紧靠透镜前后的平面上产生的复振幅分布为,1、透镜的位相调制作用,则透镜复振幅透过率表示为:,(常数项),(调制项),对于常数项,它改变的是光波整体的位相分布,并不影响平面上位相的相对空间分布,分析时可忽略掉。,对于调制
2、项,它改变了平面上位相的相对空间分布,能把发散球面波变换为会聚球面波。根据几何光学中介绍的透镜成像公式,(为透镜的焦距),1、透镜的位相调制作用,因此,透镜的位相调制因子:,Answer:透镜本身的厚度变化,使得入射光波在通过透镜的不同部位时,经过的光程差不同,即所受时间延迟不同,从而使得光波的等相位面发生弯曲。,结论:通过上面的分析可知,透镜对透射的光波具有位相调制的功能。但是,透镜为什么会具有这种能力呢?,1、透镜的位相调制作用,1.2 透镜的厚度函数,主要考虑薄透镜的情况(忽略了折射效应),如果进一步忽略光在透镜表面的反射以及透镜内部吸收造成的损耗,认为通过透镜的光波振幅分布不发生变化,
3、只是产生一个大小正比于透镜各点厚度的位相变化,于是透镜的位相调制可以表示为:,L(x,y),L(x,y)是Q到Q之间的光程:,则,上式具有普遍意义,对于任意面形的薄位相物体,一旦知道其厚度函数(x,y),就可以根据该式得到其位相调制。,1、透镜的位相调制作用,下面具体分析一下厚度函数(x,y)和透镜主要结构参数(构成透镜的两个球面的曲率半径R1和R2)之间的关系。,仅考虑旁轴光,将透镜一剖为二,1、透镜的位相调制作用,1.3 透镜的复振幅透过率,根据厚度函数的表达式,可得到在旁轴近似下,光波通过透镜时在(x,y)点发生的位相延迟,常数项,透镜位相因子,(n为透镜材料的折射率),1、透镜的位相调
4、制作用,以上推导的关系适用于各种形式的薄透镜,而且是在旁轴近似条件下推导出来的。透镜的作用:将入射平面波变换为会聚(发散)球面波,如下图所示。,入射平面波变换为球面波,这正是由于透镜具有 的位 相因子,能够对入射波前施加位相调制的结果。,1、透镜的位相调制作用,1)若在非旁轴近似条件下,即使透镜表面是理想球面,透射光波也将偏离理想球面波,即透镜产生波像差。2)实际透镜总是有大小的,即存在一个有限大小的孔径。引入光瞳函数P(x,y)来表示透镜的有限孔径,即,于是透镜的复振幅透过率可以完整的表示为:,其中,,表示透镜对入射波前的位相调制;,表示透镜对于入射波前大小范围的限制。,2、透镜的傅里叶变换
5、性质,回顾一下:利用透镜实现夫琅和费衍射,可以在透镜的焦平面上得到入射场的空间频谱,即实现傅里叶变换的运算。,透镜为什么具有这种功能呢?*根本原因在于它具有能对入射波前施加位相调制的功能,或者说是透镜的二次位相因子在起作用。下面将具体分析一下这种作用发生的具体过程,并深入讨论透镜实现傅里叶变换的一些性质。,2、透镜的傅里叶变换性质,透镜后焦面上的场是透镜前端场U1(x,y)的傅立叶变换(空间频谱)根据透镜的位相调制功能,透镜后端场U2(x,y)为:,从透镜后端到后焦面光的传播属于菲涅耳衍射,利用菲涅耳衍射公式,后焦面上的场U(x,y)为:,?,2.1 物体放置在透镜前d处,2、透镜的傅里叶变换
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息光学 信息 光学 第四 透镜 位相 调制 傅里叶
链接地址:https://www.31ppt.com/p-6073950.html