运筹学运输规划.ppt
《运筹学运输规划.ppt》由会员分享,可在线阅读,更多相关《运筹学运输规划.ppt(47页珍藏版)》请在三一办公上搜索。
1、Chapter3 运输规划(Transportation Problem),运输规划问题的数学模型表上作业法运输问题的应用,本章主要内容:,运输规划问题的数学模型,例3.1 某公司从两个产地A1、A2将物品运往三个销地B1,B2,B3,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?,运输规划问题的数学模型,解:产销平衡问题:总产量=总销量500 设 xij 为从产地Ai运往销地Bj的运输量,得到下列运输量表:,Min C=6x11+4x12+6x13+6x21+5x22+5x23 s.t.x11+x12+x13=200 x21+x22+
2、x23=300 x11+x21=150 x12+x22=150 x13+x23=200 xij 0(i=1、2;j=1、2、3),运输规划问题的数学模型,运输问题的一般形式:产销平衡,A1、A2、Am 表示某物资的m个产地;B1、B2、Bn 表示某物质的n个销地;ai 表示产地Ai的产量;bj 表示销地Bj 的销量;cij 表示把物资从产地Ai运往销地Bj的单位运价。设 xij 为从产地Ai运往销地Bj的运输量,得到下列一般运输量问题的模型:,运输规划问题的数学模型,变化:1)有时目标函数求最大。如求利润最大或营业额最大等;2)当某些运输线路上的能力有限制时,在模型中直接加入约束条件(等式或不
3、等式约束);3)产销不平衡时,可加入假想的产地(销大于产时)或销地(产大于销时)。,定理:设有m个产地n个销地且产销平衡的运输问题,则基变量数为m+n-1。,表上作业法,表上作业法是一种求解运输问题的特殊方法,其实质是单纯形法。,表上作业法,例3.2 某运输资料如下表所示:,问:应如何调运可使总运输费用最小?,表上作业法,解:第1步 求初始方案,方法1:最小元素法 基本思想是就近供应,即从运价最小的地方开始供应(调运),然后次小,直到最后供完为止。,3,11,3,10,1,9,2,7,4,10,5,8,3,4,1,6,3,3,表上作业法,总的运输费(31)+(64)+(43)+(12)+(31
4、0)+(35)=86元,元素差额法对最小元素法进行了改进,考虑到产地到销地的最小运价和次小运价之间的差额,如果差额很大,就选最小运价先调运,否则会增加总运费。例如下面两种运输方案。,15,5,10,总运费是z=108+52+151=105,最小元素法:,表上作业法,5,15,10,总运费z=105+152+51=85,后一种方案考虑到C11与C21之间的差额是82=6,如果不先调运x21,到后来就有可能x110,这样会使总运费增加较大,从而先调运x21,再是x22,其次是x12,用元素差额法求得的基本可行解更接近最优解,所以也称为近似方案。,表上作业法,方法2:Vogel法,1)从运价表中分别
5、计算出各行和各列的最小运费和次最小运费的差额,并填入该表的最右列和最下行。,3,11,3,10,1,9,2,7,4,10,5,8,表上作业法,2)再从差值最大的行或列中找出最小运价确定供需关系和供需数量。当产地或销地中有一方数量供应完毕或得到满足时,划去运价表中对应的行或列。重复1)和2),直到找出初始解为至。,3,11,3,10,1,9,2,7,4,10,5,8,5,表上作业法,7,1,1,3,5,2,1,5,表上作业法,7,1,3,5,2,7,5,3,表上作业法,1,1,3,5,1,5,3,6,3,1,2,该方案的总运费:(13)(46)(35)(210)(18)(35)85元,表上作业法
6、,第2步 最优解的判别(检验数的求法),求出一组基可行解后,判断是否为最优解,仍然是用检验数来判断,记xij的检验数为ij由第一章知,求最小值的运输问题的最优判别准则是:,所有非基变量的检验数都非负,则运输方案最优,求检验数的方法有两种:闭回路法 位势法(),位势法求检验数是根据对偶理论推导出来的一种方法。,设平衡运输问题为,设前m个约束对应的对偶变量为ui(i=1,2,m),后n个约束对应的对偶变量为vj(j=1,2,n),则运输问题的对偶问题是,4.2 运输单纯形法 Transportation Simplex Method,记原问题基变量XB的下标集为I,由对偶性质知,原问题xij的检验
7、数的相反数是对偶问题的松弛变量ij,当(i,j)I 时 ij=0,因而有,解上面第一个方程,将ui、vj 代入第二个方程求出ij,4.2 运输单纯形法 Transportation Simplex Method,表上作业法,闭回路的概念,为一个闭回路,集合中的变量称为回路的顶点,相邻两个变量的连线为闭回路的边。如下表,表上作业法,例下表中闭回路的变量集合是x11,x12,x42,x43,x23,x25,x35,x31共有8个顶点,这8个顶点间用水平或垂直线段连接起来,组成一条封闭的回路。,一条回路中的顶点数一定是偶数,回路遇到顶点必须转90度与另一顶点连接,表中的变量x 32及x33不是闭回路
8、的顶点,只是连线的交点。,表上作业法,闭回路,例如变量组 不能构成一条闭回路,但A中包含有闭回路,变量组 变量数是奇数,显然不是闭回路,也不含有闭回路;,表上作业法,用位势法对初始方案进行最优性检验:,1)由ij=Cij-(Ui+Vj)计算位势Ui,Vj,因对基变量而言有ij=0,即Cij-(Ui+Vj)=0,令U1=0,2)再由ij=Cij-(Ui+Vj)计算非基变量的检验数ij,3,11,3,10,1,9,2,7,4,10,5,8,4,3,6,3,1,3,0,-1,-5,3,10,2,9,(1),(2),(1),(-1),(10),(12),当存在非基变量的检验数kl 0,说明现行方案为最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 运输 规划
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6063963.html