流体力学连续性方程和恒定总流动量方程.ppt
《流体力学连续性方程和恒定总流动量方程.ppt》由会员分享,可在线阅读,更多相关《流体力学连续性方程和恒定总流动量方程.ppt(25页珍藏版)》请在三一办公上搜索。
1、连续性方程的微分形式,设在流场中任取一个微元平行六面体,其边长分别为dx、dy和dz,如下图所示。,假设微元平行六面体形心的坐标为x、y、z,在某一瞬时t经过形心的流体质点沿各坐标轴的速度分量为ux、uy、uz,流体的密度为。,先分析x轴方向,由于ux和都是坐标和时间的连续函数,即ux=uxx(x,y,z,t)和=(x,y,z,t)。根据泰勒级数展开式,略去高于一阶的无穷小量,得在dt时间内,沿轴方向从左边微元面积dydz流入的流体质量为,同理可得在dt时间内从右边微元面积dydz流出的流体质量为,上述两者之差为在dt时间内沿x轴方向流体质量的变化,即,同理,在dt 时间内沿y轴和z轴方向流体
2、质量的变化分别为:,因此,dt时间内经过微元六面体的流体质量总变化为,由于流体是作为连续介质来研究的,六面体内流体质量的总变化,唯一的可能是因为六面体内流体密度的变化而引起的。因此上式中流体质量的总变化和由流体密度变化而产生的六面体内的流体质量变化相等。,设开始瞬时流体的密度为,经过dt时间后的密度为,在dt时间内,六面体内因密度变化而引起的质量变化为,代入相等条件,得,上式为可压缩流体非定常三维流动的连续性方程。,不可压缩流体,可压缩流体定常三维流动的连续性方程。,若流体是定常流动,上式变为:,不可压缩流体三维流动的连续性方程。,在同一时间内通过流场中任一封闭表面的体积流量等于零,也就是说,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体力学 连续性 方程 恒定 流动
链接地址:https://www.31ppt.com/p-6054237.html