时间序列的协整检验与误差修正模型.ppt
《时间序列的协整检验与误差修正模型.ppt》由会员分享,可在线阅读,更多相关《时间序列的协整检验与误差修正模型.ppt(75页珍藏版)》请在三一办公上搜索。
1、3.2 时间序列的协整检验与误差修正模型,一、长期均衡关系与协整 二、协整的E-G检验 三、协整的JJ检验 四、关于均衡与协整关系的讨论 五、结构变化时间序列的协整检验六、误差修正模型,一、长期均衡与协整分析Equilibrium and Cointegration,1、问题的提出,经典回归模型(classical regression model)是建立在平稳数据变量基础上的,对于非平稳变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。由于许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegratio
2、n),则是可以使用经典回归模型方法建立回归模型的。例如,中国居民人均消费水平与人均GDP变量的例子,从经济理论上说,人均GDP决定着居民人均消费水平,它们之间有着长期的稳定关系,即它们之间是协整的。,经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。假设X与Y间的长期“均衡关系”由式描述,2、长期均衡,该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。,在t-1期末,存在下述三种情形之一:Y等于它的均衡值:Yt-1=0+1X
3、t;Y小于它的均衡值:Yt-1 0+1Xt;,在时期t,假设X有一个变化量Xt,如果变量X与Y在时期t与t-1末期仍满足它们间的长期均衡关系,即上述第一种情况,则Y的相应变化量为:,vt=t-t-1,如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则t期末Y的变化往往会比第一种情形下Y的变化大一些;反之,如果t-1期末Y的值大于其均衡值,则t期末Y的变化往往会小于第一种情形下的Yt。可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。一个重要的假设就是:随机扰动项t必须是平稳序列。如果t有随机性趋势(上升或
4、下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。,式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibrium error),它是变量X与Y的一个线性组合:,如果X与Y间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。,非稳定的时间序列,它们的线性组合也可能成为平稳的。称变量X与Y是协整的(cointegrated)。,3、协整,如果序列X1t,X2t,Xkt都是d阶单整,存在向量=(1,2,k),使得Zt=XT I(d-b),其中,b0,X=(X1t,X2t,Xkt)T,则认为序列X1t
5、,X2t,Xkt是(d,b)阶协整,记为XtCI(d,b),为协整向量(cointegrated vector)。如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。,3个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。,(d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。例如,中国CPC和GDPPC,它们各自都是2阶单整,如果它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从
6、计量经济学模型的意义上讲,建立如下居民人均消费函数模型是合理的。,尽管两个时间序列是非平稳的,也可以用经典的回归分析方法建立回归模型。,从这里,我们已经初步认识到:检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。,二、协整检验EG检验,1、两变量的Engle-Granger检验,为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。第一步,用OLS方法估计方程 Yt=0+1Xt+t并计算非均衡误差,得到:,称为协整回归(cointegrat
7、ing)或静态回归(static regression)。,非均衡误差的单整性的检验方法仍然是DF检验或者ADF检验。需要注意是,这里的DF或ADF检验是针对协整回归计算出的误差项,而非真正的非均衡误差。而OLS法采用了残差最小平方和原理,因此估计量是向下偏倚的,这样将导致拒绝零假设的机会比实际情形大。于是对et平稳性检验的DF与ADF临界值应该比正常的DF与ADF临界值还要小。,MacKinnon(1991)通过模拟试验给出了协整检验的临界值。,例题:对经过居民消费价格指数调整后的19782006年间中国居民总量消费Y与总量可支配收入X的数据,检验它们取对数的序列lnY与lnX间的协整关系。
8、,对于lnY与lnX,经检验,它们均是I(1)序列,最终的检验模型如下:,在5%的显著性水平下,ADF检验的临界值为2.97,对lnY与lnX进行如下协整回归:,对计算得到的残差序列进行ADF检验,最终检验模型为:,5%的显著性水平下协整的ADF检验临界值为3.59,结论:中国居民总量消费的对数序列lnY与总可支配收入的对数序列lnX之间存在(1,1)阶协整。,注意:查什么临界值表?,2、多变量协整关系的检验扩展的E-G检验,多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合。假设有4个I(1)变量Z、X、Y、W,它们有如下的长期均衡关系:,非均衡误差项t应是
9、I(0)序列:,然而,如果Z与W,X与Y间分别存在长期均衡关系:,则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它们的任意线性组合也是稳定的。例如,由于vt象t一样,也是Z、X、Y、W四个变量的线性组合,由此vt 式也成为该四变量的另一稳定线性组合。(1,-0,-1,-2,-3)是对应于t 式的协整向量,(1,-0-0,-1,1,-1)是对应于vt式的协整向量。,一定是I(0)序列。,检验程序:对于多变量的协整检验过程,基本与双变量情形相同,即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合。在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 检验 误差 修正 模型
链接地址:https://www.31ppt.com/p-6050869.html