利用向量解决空间角问题.ppt
《利用向量解决空间角问题.ppt》由会员分享,可在线阅读,更多相关《利用向量解决空间角问题.ppt(22页珍藏版)》请在三一办公上搜索。
1、线线角,复习,线面角,二面角,小结,引入,专题一:,利用向量解决 空间角问题,线线角,复习,线面角,二面角,小结,引入,空间向量的引入为代数方法处理立体几何问题提供了一种重要的工具和方法,解题时,可用定量的计算代替定性的分析,从而避免了一些繁琐的推理论证。求空间角与距离是立体几何的一类重要的问题,也是高考的热点之一。本节课主要是讨论怎么样用向量的办法解决空间角问题。,数量积:,夹角公式:,线线角,复习,线面角,二面角,小结,引入,异面直线所成角的范围:,思考:,结论:,线线角,复习,线面角,二面角,小结,引入,例一:,线线角,复习,线面角,二面角,小结,引入,解:以点C为坐标原点建立空间直角坐
2、标系 如图所示,设 则:,所以:,所以 与 所成角的余弦值为,练习:,在长方体 中,,题型二:线面角,直线与平面所成角的范围:,思考:,结论:,线线角,复习,线面角,二面角,小结,引入,例二:,在长方体 中,,线线角,复习,线面角,二面角,小结,引入,练习:,的棱长为1.,正方体,线线角,复习,线面角,二面角,小结,引入,二面角的范围:,关键:观察二面角的范围,线线角,复习,线面角,二面角,小结,引入,设平面,启示:利用向量解决有关平面问题关键在于找到这个平面的一个法向量必要时可设,然后任取!,小结:,1.异面直线所成角:,2.直线与平面所成角:,3.二面角:,关键:观察二面角的范围,高考题练
3、习:,B,A,O,B,A,O,D,P,X,Y,Z,X,Y,Z,X,Y,Z,X,Y,Z,空 间 向 量 法,D,E,F,A,B,C,【分析】如果用纯几何方法求异面直线所成的角则需要对AD或BF进行平移并构造三角形,,弊端:需添加辅助线,思路曲折呈树状结构,例3【1996全国理、文19】如图,正方形ABCD所在平面与正方形ABEF所在平面成 的二面角,则异面直线AD与BF所成的角的余弦值是_,【分析】运用空间向量法求解,思路直接清晰:,空 间 向 量 法,D,E,F,A,B,C,AD与BF所成的角可转换成向量的运算,2.抓住题设中的“正方形”、“二面角”两大条件,则由ABAD,ABAF有DAF=,即 恰是不共面的三个向量,且两两夹角已知,可构成一个基底表示图中任一向量,实现向量的转换。,例3【1996全国理、文19】如图,正方形ABCD所在平面与正方形ABEF所在平面成 的二面角,则异面直线AD与BF所成的角的余弦值是_,【解】设正方形ABCD与正方形ABEF边长为1,由已知ABAD,ABAF,则有DAF=,例3【1996全国理、文19】如图,正方形ABCD所在平面与正方形ABEF所在平面成 的二面角,则异面直线AD与BF所成的角的余弦值是_,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 向量 解决 空间 问题

链接地址:https://www.31ppt.com/p-6041296.html