高等数学微分中值定理教学ppt.ppt
《高等数学微分中值定理教学ppt.ppt》由会员分享,可在线阅读,更多相关《高等数学微分中值定理教学ppt.ppt(27页珍藏版)》请在三一办公上搜索。
1、第三章 导数的应用,第一节 微分中值定理,第二节 函数的性质,第三节 洛必达法则,第一节 微分中值定理,本节主要内容:,一、罗尔中值定理,定义 导数等于零的点称为函数的驻点(或稳定点、临界点),引理的直观意义:可导函数极值点处的切线平行于 x 轴.,定理3.1.1(罗尔中值定理)设函数y=f(x)在区间a,b上有定义,如果(1)函数 f(x)在闭区间a,b上连续;(2)函数 f(x)在开区间(a,b)内可导;(3)函数 f(x)在区间两端点处的函数值相等,即f(a)=f(b);则在(a,b)内至少存在一个点 a b,使得f()=0.,例如,定理的证明,罗尔定理的几何意义:如果连续函数除两个端点
2、外处处有不垂直于x轴的切线,并且两端点处纵坐标相等,那么在曲线上至少存在一点,在该点处的切线平行于x 轴(如下图)。,1.罗尔定理中的是(a,b)内的某一点,定理仅从理论上指出了它的存在性,而没有给出它的具体取值;,2.罗尔定理的条件是充分非必要条件,只要三个条件均满足,就充分保证结论成立。但如果三个条件不全满足,则定理的结论可能成立也可能不成立。看如下例子:,两点说明:,例,例,例1 验证罗尔中值定理对函数f(x)=x3+4x2-7x-10 在区间-1,2上的正确性,并求出,解得,令f(x)=3x2+8x-7=0,(1)f(x)=x3+4x2-7x-10在区间-1,2上连续;,(2)f(x)
3、=3x2+8x-7在(-1,2)内存在;,(3)f(-1)=f(2)=0;,所以 f(x)满足定理的三个条件.,解,例2 证明方程x5-5x+1=0有且仅有一个小于1的正实根,存在性:令 f(x)=x5-5x+1,则f(x)在0,1上连续,f(0)=1,f(1)=-3,由介值定理:至少存在一点x0(0,1),使f(x0)=0,x0即为方程的小于1的正实根.,唯一性:设另有x1(0,1),x1 x0,使f(x1)=0,因为f(x)在x1,x0之间满足罗尔定理的条件,所以至少存在一点(在x1,x0之间),使得f()=0,但f(x)=5x4-50,x(0,1),矛盾,所以为唯一实根.,证明,例3 不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 微分 中值 定理 教学 ppt
链接地址:https://www.31ppt.com/p-6039043.html