08第七章酶与催化反应.ppt
《08第七章酶与催化反应.ppt》由会员分享,可在线阅读,更多相关《08第七章酶与催化反应.ppt(157页珍藏版)》请在三一办公上搜索。
1、第七章 酶与催化反应ENZYMES AND CATALYTIC REACTIONS,酶学研究简史,公元前两千多年,我国已有酿酒记载。1833年,Anselme Payen提纯了麦芽淀粉糖化酶(淀粉酶)。1878年,Wilhelm Khne首次提出enzyme一词。1894年,Emil Fischer证明了酶的专一性,酶与底物之间作用的锁钥关系。1897年,Buchner兄弟用不含细胞的酵母提取液,实现了发酵。1913年,Leonor Michaelis和Maud Menten推导出酶反应的动力学方程式。19261930年,James Sumner和John H.Northrop分别将脲酶和胃蛋
2、白酶、胰蛋白酶制成结晶,确定了酶的蛋白质本质。1941年,George Beadle和Edward Tatum的“一个基因一个酶”假说首次将蛋白质与基因联系在一起,推动了生物化学与遗传学的结合。1982年,Cech首次发现RNA也具有酶的催化活性,提出核酶(ribozyme)的概念。1995年,Jack W.Szostak研究室首先报道了具有DNA连接酶活性DNA片段,称为脱氧核酶(deoxyribozyme)。,第一节 酶和酶促反应 Enzymes and Enzymatic Reactions,一、化学反应具有热力学和动力学特性,(一)热力学性质涉及反应平衡和能量平衡,1反应平衡可用平衡常
3、数来描述,一定的温度下,Keq与反应的初始浓度无关,它反映化学反应的本性。Keq越大则反应越倾向于产物的生成,即正向反应进行得越完全;Keq越小则逆反应的程度越大。Keq是化学反应可能进行的最大限度的量度。,2自由能的变化是化学反应的动力,反应物的自由能(G)与其焓、温度(T)和熵(S)相关,等于其焓减去绝对温度和熵的乘积,即G=H TS。,在生物系统中,生物分子在等温、等压条件下,在化学反应中能量的变化可以用自由能变(G)来量度。,G=H TS,自由能的变化是化学反应的动力,影响化学反应的方向。,反应方向与H、S和T的关系,3标准自由能变与平衡常数有关,标准自由能变(G)是指在标准状态下的自
4、由能变,(二)动力学性质是对反应速率的描述,动力学是研究化学反应速率及其影响因素的科学。,反应速率是单位体积内反应进度随时间的变化率,任何反应速率均由底物浓度和速率常数(rate constant,k)所决定。,一级反应(first-order reaction):单底物反应 二级反应(second-order reaction):双底物反应,二、酶的化学本质是蛋白质,(一)单纯酶仅含有氨基酸组分,有些酶其分子结构仅由氨基酸残基组成,没有辅助因子。这类酶称为单纯酶(simple enzyme)。如脲酶、一些蛋白酶、淀粉酶、酯酶和核糖核酸酶等。,(二)结合酶既含有氨基酸组分又含有非氨基酸组分,结
5、合酶(conjugated enzyme)是除了在其组成中含有由氨基酸组成的蛋白质部分外,还含有非蛋白质部分,辅助因子分类(按其与酶蛋白结合的紧密程度),一些化学稳定的小分子有机化合物是重要的辅酶或辅基。,辅酶在反应过程中可与多种酶蛋白结合,作为底物在不同的酶之间传递电子、质子或化学基团。,辅基在反应中不能离开与其结合的酶蛋白。,小分子有机化合物辅酶(辅基)的种类与作用,金属离子的作用:作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;作为连接酶与底物的桥梁,形成三元复合物;金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;金
6、属离子与酶的结合还可以稳定酶的空间构象,稳定酶的活性中心。,金属酶(metalloenzyme)金属离子与酶结合紧密,提取过程中不易丢失。金属激活酶(metal-activated enzyme)金属离子为酶的活性所必需,却不与酶直接结合,而是通过底物相连接。,金属酶和金属激活酶,(三)单体酶仅含有一条肽链而寡聚酶含有两条或两条以上的肽链,三、按酶所催化反应的类型将酶分为六大类,(一)催化氧化还原反应的酶属于氧化还原酶类,氧化还原酶类(oxidoreductases)包括催化传递电子和氢、以及需氧参加反应的酶。例如,脱氢酶类、加氧酶类、过氧化物酶和过氧化氢酶等。,(二)催化分子间基团转移或交换
7、的酶属于转移酶类,转移酶类(transferases)包括将磷酸基从ATP转到另外底物的激酶、加无机磷酸使化学键断裂的磷酸化酶,以及糖基转移酶、转氨酶等。,(三)催化底物发生水解反应的酶属于水解酶类,水解酶类(hydrolases),按其所水解的底物不同,根据它们的作用部位,蛋白酶、酯酶、磷酸酶、糖苷酶、核酸酶,外切酶、内切酶,(四)催化从底物移去一个基团并形成双键的反应或其逆反应的酶属于裂合酶类,(五)催化同分异构体相互转化的酶类属于异构酶类,异构酶类(isomerases):催化分子内部基团的位置互变、几何或光学异构体互变、以及醛酮互变的酶类。,如:变位酶、表构酶、异构酶。,(六)催化两种
8、底物形成一种产物同时偶联有高能键的水解释能的酶属于合成酶类,DNA连接酶、氨基酰-rRNA合成酶、谷氨酰胺合成酶属于连接酶或合成酶类。,合成酶类(synthetases)又称连接酶类(ligases)。,四、酶可按其所催化的反应类型予以命名,(一)酶的系统命名法可反映出酶的多种信息但比较繁琐,系统命名法根据酶所催化的整体反应,按酶的分类对酶命名,每个酶都有一个名称和一个编号。,编号中4个数字中第1个数字是酶的分类号,第2个数字代表在此类中的亚类,第3个数字表示亚-亚类,第4个数字表示该酶在亚-亚类中的序号。,酶的分类与命名举例,(二)推荐名称简便而常用,由于系统名称较烦琐,国际酶学委员会还同时
9、为每一个酶从常用的习惯名称中挑选出一个推荐名称(recommended name),系统名称 L-乳酸:NAD+氧化还原酶推荐名称 乳酸脱氢酶,五、同工酶催化相同的化学反应,(一)同工酶是催化相同化学反应而结构不同的一组酶,定义:同工酶(isoenzyme)是指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。,同工酶主要由于基因倍增(duplication)和趋异(divergence)所致。,*举例:乳酸脱氢酶(LDH1 LDH5),(二)同工酶在生物体中的表达分布具有时空特异性,同工酶存在于同一种属的不同个体,同一个体的不同组织、同一细胞的不同亚细胞结构,以及同
10、一组织、细胞的不同发育阶段。,人体各组织器官LDH同工酶谱(活性%),(三)检测组织器官同工酶谱的变化有重要的临床意义,在代谢调节上起着重要的作用;用于解释发育过程中阶段特有的代谢特征;同工酶谱的改变有助于对疾病的诊断;同工酶可以作为遗传标志,用于遗传分析研究。,第二节 酶的工作原理Mechanism of Enzymatic Reactions,、酶具有与一般催化剂相似的工作原理,(一)酶与一般催化剂一样能降低反应的活化能,1活化能是化学反应的能障,活化能:指在一定温度下一摩尔底物(substrate)从低自由能的初始态转变成能量较高的过渡态所需要的自由能,即过渡态中间产物比基态底物高出的那
11、部分能量。,酶和一般催化剂加速反应的机制都是降低反应的活化能(activation energy)。酶比一般催化剂更有效地降低反应的活化能。,2活化能的降低可使反应速率呈指数上升,(二)酶与一般催化剂一样能加速化学反应而不改变反应的平衡点,酶与一般催化剂一样,只能加快反应速率,使其缩短到达反应平衡的时间,而不能改变反应的平衡点。,反应达到平衡时自由能的变化仅取决于底物与产物的自由能之差。,任何催化剂都不能改变底物和产物自身的自由能。,二、酶具有不同于一般催化剂的显著特点,酶的催化效率通常比无催化剂时的自发反应高1081020倍,比一般无机催化剂高1071013倍。,(一)酶对底物具有极高的催化
12、效率,酶的特异性或专一性(specificity),酶对其所催化的底物和反应类型具有严格的选择性,一种酶只作用于一种化合物,或一类化学键,催化一定的化学反应并产生一定结构的产物的现象。,(二)酶对底物具有高度的特异性或专一性,1.有的酶对其底物具有极其严格的绝对专一性,有的酶仅对一种特定结构的底物起催化作用,产生具有特定结构的产物。酶对底物的这种极其严格的选择性称为绝对特异性(absolute specificity)。,脲酶仅水解尿素,对甲基尿素则无反应。,2.多数酶对其底物具有相对特异性,多数酶可对一类化合物或一种化学键起催化作用,这种对底物分子不太严格的选择性称为相对特异性(relati
13、ve specificity)。,脂肪酶不仅水解脂肪,也可水解简单的酯。,胰蛋白酶水解由碱性氨基酸(精氨酸和赖氨酸)的羧基所形成的肽键。,各种蛋白酶对肽键的专一性,人体内有多种蛋白激酶,它们均催化底物蛋白质丝氨酸(或苏氨酸)残基上羟基的磷酸化,3.有些酶对其底物表现出立体异构专一性,酶对空间构型所具有的特异性要求称为空间异构特异性(stereospecificity),延胡索酸酶仅对延胡索酸(反丁烯二酸)起催化作用,将其加水生成苹果酸,对顺丁烯二酸则无作用,乳酸脱氢酶仅催化L-乳酸脱氢生成丙酮酸,而对D-乳酸无作用。,三、酶活性中心是酶与底物结合并将底物转化为产物的特定部位,(一)酶分子上的必
14、需基团与酶的活性密切相关,溶菌酶的活性中心,酶的活性中心由许多必需基团组成,必需基团(essential group)酶分子中氨基酸残基侧链的化学基团中,与酶活性密切相关的化学基团。,活性中心内的必需基团,位于活性中心以外,维持酶活性中心应有的空间构象所必需。,活性中心外的必需基团,底 物,活性中心以外的必需基团,结合基团,催化基团,活性中心,目 录,组成酶活性中心的必需基团在一级结构上可能相距很远,但在形成三级结构时相互接近,形成具有三维结构的区域,且多是酶分子中的裂隙或凹陷所形成的疏水口袋。,(二)酶的活性中心的构象有利于酶与底物结合及催化反应,胰蛋白酶、胰凝乳蛋白酶和弹性蛋白酶活性中心“
15、口袋”,(一)酶与底物之间的相互作用表现有多种效应,1酶与底物结合时相互诱导发生构象改变,诱导契合假说(induced-fit hypothesis),酶-底物复合物,酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合假说。,四、酶对底物具有多种催化机制,羧肽酶的诱导契合模式,2形成酶-底物过渡态复合物过程中释放结合能,底物与酶的活性中心相互诱导契合形成过渡态化合物,过渡态与酶的活性中心以次级键(氢键、离子键、疏水键)相结合,这一过程是释能反应,所释放的能量称为结合能(binding energy)。结合能可以抵消一部分活化能,是酶反应降低
16、活化能的主要能量来源。酶不能使底物形成过渡态,则没有结合能的释放,也就不能催化反应的进行。,3邻近效应和定向排列有利于底物形成过渡态,邻近效应(proximity effect)和定向排列(orientation arrange)将分子间的反应变成类似分子内的反应,使反应速率显著提高。,在疏水环境中进行酶反应有很大的优越性,此现象称为表面效应(surface effect)。,酶的活性中心多位于其分子内部的疏水“口袋”中,酶反应在酶分子内部的疏水环境中进行。疏水环境可使底物分子脱溶剂化(desolvation),排除周围大量水分子对酶和底物分子中功能基团的干扰性吸引或排斥,防止二者之间形成水化
17、膜,利于底物和酶分子之间的直接密切接触和相互结合。,4.表面效应有利于底物和酶的接触与结合,(二)酶对底物呈现多元催化,酶是两性解离的蛋白质,酶活性中心上有些基团是质子供体(酸),有些是质子接受体(碱)。,这些基团在酶活性中心的准确定位有利于质子的转移,这种一般酸-碱催化(general acid-base catalysis)可以使反应速率提高102105倍。,质子转移反应都包含一般酶-碱催化反应,酶分子中具有酸-碱催化作用的基团,酶可与底物形成瞬时共价键,很多酶在催化过程中,与底物形成瞬时共价键,底物与酶形成共价键后被激活,并很容易进一步水解形成产物和游离的酶。这种催化机制称为共价催化(c
18、ovalent catalysis)。,AB+E:AE+BH2OAE A+E:+B,酶的亲核基团与底物共价结合,酶可通过亲核催化或亲电子催化加速反应,酶活性中心有的催化基团属于亲核基团,可以提供电子给带有部分正电荷的过渡态底物,形成瞬间共价键。这种催化作用称为亲核催化(nucleophilic catalysis)。,亲电子催化(electrophilic catalysis)可使酶活性中心的阳离子亲电子基团与富含电子的底物形成共价键。,胰凝乳蛋白酶的亲核催化、共价催化和酸-碱催化机制,第三节 酶促反应动力学The Kinetics of Enzymatic Reactions,概念研究各种因
19、素对酶促反应速率的影响,并加以定量的阐述。影响因素包括有酶浓度、底物浓度、pH、温度、抑制剂、激活剂等。,研究一种因素的影响时,其余各因素均恒定。,单底物、单产物反应;酶促反应速率(velocity,V)一般在规定的反应条件下,用单位时间内底物的消耗量和产物的生成量来表示;反应速率取其初速率,即底物的消耗量很小(一般在5以内)时的反应速率;底物浓度远远大于酶浓度。,研究前提,一、采用酶促反应初速率来研究酶促反应动力学,(一)酶活性是指酶催化化学反应的能力,衡量酶活性的尺度是酶促反应速率的大小。酶促反应速率可用单位时间内底物的减少量或产物的生成量来表示。由于底物的消耗量不易测定,所以实际工作中经
20、常是测定单位时间内产物的生成量。,酶的活性:以国际单位(international unit,IU)表示。在规定的实验条件下(如温度、pH的限定和足够的底物浓度等),每分钟催化1mol底物转变成产物所需要的酶量为1个国际单位(IU)。,催量(Katal),1IU16.67109 Kat,1催量是指在特定条件下,每秒钟将1mol底物转化成产物所需的酶量,(二)酶促反应初速率是反应刚刚开始时测得的反应速率,酶促反应初速率是指反应刚刚开始,各种影响因素尚未发挥作用时的酶促反应速率,即反应时间进程曲线为直线部分时的反应速率。,(三)有三类方法可用来测定底物或产物的变化量,1直接测定法是对底物或产物量的
21、变化进行直接检测,有些酶促反应可在反应进行一定时间后,不用任何辅助反应便可直接测定反应液中底物或产物的浓度。这类测定方法称为直接测定法(direct assay)。,还原型(Fe2+)细胞色素c在波长550nm处有明显的吸收峰,而氧化型(Fe3+)则无;细胞色素C氧化酶对细胞色素C的氧化反应,可以直接在波长550nm处检测一定时间内还原型细胞色素C的减少过程。,有些酶促反应的底物和产物不能直接进行检测,必须增加一些辅助试剂来达到检测的目的,这种方法称为间接测定法(indirect assay),2间接测定法利用非酶辅助反应对底物或产物量的变化进行间接检测,3酶偶联测定法是间接反映初始反应的底物
22、或产物量的变化量,许多酶促反应的底物和产物虽然不能直接检测,但可以与另外的酶反应相偶联,偶联的酶以第一个酶的产物为底物,或以此类推,以最后的酶反应产物可以直接检测为目的。这种通过偶联其他酶并对此酶促产物进行直接检测,间接地反映待测酶反应的底物或产物变化量的方法称为酶偶联测定法(enzyme coupled assay),外加的酶称为工具酶或辅助酶(auxiliary enzyme),产物可直接检测的酶称为指示酶(indicator enzyme),丙氨酸转氨酶丙氨酸+-酮戊二酸 丙酮酸+谷氨酸乳酸脱氢酶丙酮酸+NADH+H+乳酸+NAD+(在340nm处有吸收峰)(在340nm处无吸收峰),二
23、、酶促反应速率受底物浓度的影响,(一)酶促反应速率对底物浓度作图呈矩形双曲线,在酶浓度和其他反应条件不变的情况下,反应速率V对底物浓度S作图呈矩形双曲线。,当底物浓度较低时,反应速率与底物浓度成正比;反应为一级反应。,目 录,随着底物浓度的增高,反应速率不再成正比例加速;反应为混合级反应。,目 录,当底物浓度高达一定程度,酶被底物所饱和,反应速率不再增加,达最大速率;反应为零级反应。,目 录,(二)反应速率与底物浓度的关系可用米-曼氏方程式表示,1米-曼氏方程定量地描述底物浓度与反应速率的关系,1913年Michaelis和Menten提出反应速率与底物浓度关系的数学方程式,即米-曼氏方程式,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 08 第七 催化 反应
链接地址:https://www.31ppt.com/p-6037582.html