试验数据极差分析.ppt
《试验数据极差分析.ppt》由会员分享,可在线阅读,更多相关《试验数据极差分析.ppt(90页珍藏版)》请在三一办公上搜索。
1、第五章 试验结果的直观分析,经过试验测得全部试验数据后,如何科学分析这些数据,从中得出正确的结沦,是试验设计的另一重要内容。下面介绍一种综合比较的极差分析法,也称直观分析法。通过对试验结果的分析,要解决四个问题:(1)确定因素的主次,即被考察的因素中各因素对指标影响的大小情况。(2)分清水平的优劣,即各因素哪个水平对试验指标影响为最好。(3)初选较优生产条件(或较优设计方案)。(4)展望进一步试验方向并确定最优生产条件,例5-1在暖风粮食烘干机的研究中,为了提高单位时间的粮食脱水率,降低烘干耗电量,对烘干机的导向管的结构参数进行试验研究:我们假设因素之间没有交 互作用。,第一节 无交互作用的正
2、交试验设计,烘干机试验方案与结果分析表,一个因素对试验指标的影响大,则这个因素是主要的,就是说这个因素的水平变动引起试验指标的数值波动大。试验指标波动大小用因素的极差大小表示。极差:某因素的不同水平对应指标和平均值的数值最大者与数值最小者之差。某因素的极差大,则反映该因素的水平变动时试验指标的波动幅度大,该因素对指标的影响大,因而显得主要。所以根据极差的大小能确定因素的主次。,例5-2某农药厂为提高一种农药收率而进行试验,因素水平表如下:四因素两水平,不考虑交互作用。选用L8(27)正交表,试验方案与结果分析表,RCRBRARD,确定因素主次为:C、B、A、D,没有安排因素的列称为空白列,空白
3、列不涉及因素的水平改变问题,极差应该为零。但实际上有的空白列极差不为零:R空较小,可作为误差界限:如果因素极差大于空白列极 差,说明因素对试验指标有影响 如果因素极差小于或等于空白 列,说明因素对试验指标无影响 极差是由试验误差所引起。R空较大,须考虑还有不可忽略的原因对试验指标有较大的影响,必须重新分析较优生产条件。,联合起来发生的影响(280-200)-(215-200)-(225-200)=40kg正交试验设计中把该值的一半称为交互作用,记为NP,第二节 有交互作用的正交试验设计,第二节 有交互作用的正交试验设计,A、B联合影响,A、B交互作用,第三列极差,试验方案与结果分析表,RC R
4、AB RB RBRARD=RBC,确定因素主次为:C、AB、B、A、D=BC,,AB,AC,BC,注意:对于一级交互作用,在安排试验方案和分析结果时,虽可把交互作用当作一个“因素”看待,但它并非是一个具体因素,因而对试验条件不发生影响。2)表头设计时,既要限制严格,又要安排合理,即对所考虑的因素以及它们的交互作用不能随意安排。任意两列的交互作用列的位置,须根据所选正交表及相应的附表“两列间的交互作用列表”中查出。P16,L8(27)两列间的交互作用列表,列号,列号,不考虑交互作用,较优组合:C2B1A1D2显然,交互作用AB的影响远远超过A或B因素单独对指标的影响。这时因素A和B 的最优水平必
5、须分析交互作用的不同搭配效果。,考虑交互作用,较优组合:C2B1A2D2已做过的八次试验中,第六号试验条件C2B1A2D1收率最高,而分析预报出的最优生产条件不包括在已做试验中,主要是次要因素D的水平对指标影响不显著,影响显著交互作用AB的搭配是一致的,分析可靠,再进行校核试验加以验证,BC的交互作用较小,可作为空白列处理。验证因素B和C 交互作用的不同搭配效果。,C1 C2,不同搭配 时指标平 均值,B因素,C因素,B1,B2,考虑B、C交互作用,较优组合:C2B1与不考虑B、C交互作用分析一致,可以忽略B、C的交互作用,作为空白列处理,所以根据极差的大小正确分析交互作用的显著情况,确定最优
6、的生产条件组合。,在实际试验中,由于受条件的限制(如材料、温度、制作等),有的因素不能多选水平;有些因素需要重点考察而多选几个水平,于是出现了因素水平数不等的正交试验设计问题。方法一:直接选用混水平正交表并列法L8(41 24):可安排一个四水平的因素和四个二水平因素L34(31 41 24):可安排一个三水平因素、一个四水平 的因素和四个二水平因素,第三节 因素水平数不等的正交试验设计,例5-3为减少玉米收获机的收获损失率,对摘穗装置进行改进试验。试验 指标:玉米损失率(%)因素水平,第三节 因素水平数不等的正交试验设计,玉米摘穗装置试验 方案与结果分析,由于各试验因索的水平数不相等,根据极
7、差R值的大小来分析各因素的主次作用时,应注意各因素分析所得的极差R值的作用就不一样。所以,不能只凭极差R的大小来分析(最好用方差分析法),还要结合生产实践经验和专业知识来综合考虑。该例用极差分析综合考虑较优生产条件是A4B2C1,恰好是第8号试验,从指标上看确实是损失率最小。,方法二:拟水平法:重复某个因素的某个重要水平以构成等水平,例5-4“东方红-75”拖拉机与1 LD-435悬挂犁机组配套最大耕 深试验研究。试验指标:最大耕深(cm)。由于犁铧只有锐、钝两种状态,所以犁铧因素只取二个水平。试验因素和水平,符合条件的混水平正交表为L18(21 37)因素A如果为三水平,可采用L9(34),
8、试验次数减半。把重点考察的因素A的一个水平锐铧重复一次,把它当作三个水平。这个虚拟的水平称为拟水平。,试验方案与结果分析表,31.6,Kj1 29.4 27.1 27.3 29.4 Kj2 26.7 28.0 28.0 28.6 Kj3 _ 30.3 29.5 27.4R 2.7 3.2 2.2 2.0,因素主次:B、A、C最优组合:B3A1C3,拟水平法对于拟水平的各列,各水平具有不同的相应试验号个数,实际上各因素之间水平数仍不相等,因此根据极差的大小只能粗略地估计各因素的主次。可以用方差分析法更准确地判断因素的主次顺序。(用方差分析试验数据时,结论是三因素影响都不显著,试验误差太大,极差分
9、析的最优组合是在没能分开试验误差影响的情况下得到的,所以只能做分析参考)。,第四节 多指标的正交试验设计,多指标试验:在实际工作中,试验的效果、结构、参数的确定,经常是由多个指标来衡量,例如,一次试验要同时考虑产品的几项性 能、产量、成本等。这种试验称多指标试验。方法一:综合平衡法 逐一按单试验指标进行分析,得出相应的结论,然 后根据因素主次、水平优劣和各项指标的重要性、实践经验等进行综合平衡,得出较优组合,这种方 法称综合平衡法。,例5-4探索水田收获机械行走机械及整机参数的合理选择,从而提高行走机构的通过性能。确定的试验指标:滚动阻力、滑转率、下陷深度,试验指 标的数值越小越好 因素水平表
10、,试验方案及试验结果,试验方案及试验结果,因素的主次顺序和最优水平,总的因素主次顺序为BAC最优水平:B3A1C1,方法二:综合加权评分法:根据各项试验指标的重要性确定其权值Wk(评估各项试验指标在整个试验中的重要性,确定各项试验指标所占重要性比例系数称为权值),然后根据各项试验指标的权值和试验指标的实测值,计算综合加权评分值,将多指标化为单指标,最后按单指标分析方法分析出总的结果。,方法二:综合加权评分法:步骤:1.确定各项试验指标的权值大小 滚动阻力的权W1=0.5 滑转率的权W2=0.3 下陷深度的权W3=0.2 2.计算各项试验指标观测值的评分值,第K项试验指标中最大值,第K项试验指标
11、中最小值,第i号试验 第K项试验指标观测值,3.计算综合加权评分值,4.按单指标试验分析出试验的较优组合为,与综合平衡法所得结论完全相同。,因素主次顺序为:BAC最优水平:B3A1C1,综合加权评分法便于对多项试验指标进行综合性优选,其关键取决于各权值的确定合理与否。但该法不能分析出各因素对某项试验指标具体的影响,而综合平衡法可以较充分地分析出各因素对各项具体因素的影响。因此当需要分析、了解单项试验指标及趋势时,应将综合加权评分法与综合平衡法相互结合运用。,第五节 农机试验的区组设计,一、不完全区组设计,把干扰条件作为区组因索与其他因素一样在正交表上占一列位置。把区组因素所在列处于同一水平的各
12、号试验安排在一个区组内,因此每个区组内只安排部分试验号试验。这样的区组称为不完全区组。用不完全区组安排区组试验的方法称为不完全区组设计。,第五节 农机试验的区组设计,一、不完全区组设计,例.为寻找水田收获机械的最佳行走机构方案进行了实地试验研究。所谓最佳行走机构是指行走阻力小的行走机构。考虑三个因素,每个因素的水平取三个,其因素水平如下表。试验在水田进行,试验地的土壤坚实度在一个方向上有变化。不考虑交互作用。选用L9(34)正交表安排试验,第五节 农机试验的区组设计,一、不完全区组设计,试验方案(L9(34),第五节 农机试验的区组设计,一、不完全区组设计,不完全区组田间排列示意图,试验方案与
13、试验结果分析表,第五节 农机试验的区组设计,试验指标值的矫正方法:1.将全部试验值求和求平均 2.计算区组因素列的 和区组效应 同一区组水平试验指标值的平均值 区组因素第 水平效应 3.各试验数据减去所在区组效应,得其矫正值,第五节 农机试验的区组设计,二、方块区组设计,方块区组设计法类似于在一个方向上有差异的不完全区组设计,把纵纵向和横向两个方向的差异作为两个区组因素,分别称为行因素和列因素。在设计试验方案时把它们作为二个因素考虑进去,在正交表上各占有一列位置。在田间试验时把整个试验地按行因素水平数和列因素水平数画成行与列的小块。每个试验号根据行因素和列因素给出的相应的水平号安排到方块中去。
14、,第五节 农机试验的区组设计,二、方块区组设计,例.某农机所在对深松耕法机具工作部件进行试验研究时,采用了方块区组设计。试验要考察的因素及水平如表所示。要求控制两个方向土壤坚实度的差异。试验时耕深均控制在30cm,均采用斜齿铲柄。解:两因素三水平试验,要求控制试验地两个方向土壤坚实度的差异,为此增加行、列区组因素,选L9(34)正交表安排试验,因素水平表,第五节 农机试验的区组设计,二、方块区组设计,列因素,行因素,第五节 农机试验的区组设计,二、方块区组设计,松,硬,松,硬,方块设计田间排列示意图,试验方案与试验结果分析表,第六章 试验结果的方差分析,方差分析(analysis of var
15、iance)是英国统计学家费歇而于1923年提出的,半个多世纪以来得到了广泛的应用和发展,现已成为科学研究中重要的统计学分析方法之一。方差分析是将因素水平(包括交互作用)变化引起的试验指标的波动与误差引起的试验数据的波动区分开来的一种统计分析方法。通过方差分析主要解决的问题:分析各因素水平的改变对试验指标的影响和误差对试验指标的影响,并将它们进行比较,以判断各因素对试验指标的影响是否显著,从而得到影响试验指标的主次因素和最优水平。单因素试验的方差分析:方差分析只针对一个试验因素多因素试验的方差分析:方差分析同时针对多个试验因 素进行。,单因素试验的方差分析讨论一种因素对试验结果有无显著影响例1
16、 播种深度是播种机设计和使用调整的重要因素。现考察小麦播种深度对出苗率的影响,找出最佳播种深度。试验在经过人工处理保证土壤条件一致的试验地上进行。试验地分l2个小区,取四种播种深度,每种深度重复3个小区。这是一个四水平单因素试验,取出苗率作为试验指标(),试验结果如表4一1所示:,第一节 单因素试验的方差分析,一、试验误差的总估计试验数据的结构:,第一节 单因素试验的方差分析,i水平j次重复试验的试验指标,相应的误差,i水平j试验指标的理论值,可用重复试验数据的平均值来估计,偏差平方和:A1水平下误差引起的数据总波动,3,A2、A3、A4水平下误差引起的数据总波动,误差引起的总的偏差平方和简称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试验 数据 极差 分析

链接地址:https://www.31ppt.com/p-6025101.html