计量经济学一元线性回归模型的统计检验.ppt
《计量经济学一元线性回归模型的统计检验.ppt》由会员分享,可在线阅读,更多相关《计量经济学一元线性回归模型的统计检验.ppt(25页珍藏版)》请在三一办公上搜索。
1、2.4 一元线性回归模型的统计检验,一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间,回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。,尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。主要包括拟合优度检验、变量的显著性检验及参数的区间估计。,一、拟合优度检验,拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。度量拟合优度的指标:判定系数(可决系数)R2,2
2、、总离差平方和的分解,Y的i个观测值与样本均值的离差,由回归直线解释的部分,回归直线不能解释的部分,离差分解为两部分之和,如果Yi=i 即实际观测值落在样本回归“线”上,则拟合最好。可认为,“离差”全部来自回归线,而与“残差”无关。,对于所有样本点,则需考虑这些点与样本均值离差的平方和,可以证明:,记,总体平方和(Total Sum of Squares),回归平方和(Explained Sum of Squares),残差平方和(Residual Sum of Squares),TSS=ESS+RSS,Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回
3、归线(ESS),另一部分则来自随机势力(RSS)。,在给定样本中,TSS不变,如果实际观测点离样本回归线越近,则ESS在TSS中占的比重越大,因此拟合优度:回归平方和ESS/Y的总离差TSS,3、可决系数R2统计量,称 R2 为(样本)可决系数/判定系数(coefficient of determination)。,可决系数的取值范围:0,1 R2越接近1,说明实际观测点离样本线越近,拟合优度越高。,在例的收入-消费支出例中,,注:可决系数是一个非负的统计量。它也是随着抽样的不同而不同。为此,对可决系数的统计可靠性也应进行检验,这将在第3章中进行。,二、变量的显著性检验 Testing Sig
4、nificance of Variable,回归分析是要判断解释变量X是否是被解释变量Y的一个显著性的影响因素。在一元线性模型中,就是要判断X是否对Y具有显著的线性性影响。这就需要进行变量的显著性检验。,变量的显著性检验所应用的方法是数理统计学中的假设检验。计量经济学中,主要是针对变量的参数真值是否为零来进行显著性检验的。,1、假设检验,所谓假设检验,就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原假设。假设检验采用的逻辑推理方法是反证法。先假定原假设正确,然后根据样本信息,观察由此假设而导致的结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 一元 线性 回归 模型 统计 检验
链接地址:https://www.31ppt.com/p-6024233.html