胡勇-有机化学教学第九章醛和酮.ppt
《胡勇-有机化学教学第九章醛和酮.ppt》由会员分享,可在线阅读,更多相关《胡勇-有机化学教学第九章醛和酮.ppt(168页珍藏版)》请在三一办公上搜索。
1、1,第九章 醛和酮,主要内容,第一节结构和命名第二节物理性质第三节化学反应第四节共轭不饱和加成和还原第五节醛酮的制备,2,1、掌握羰基(碳氧双键)和碳碳双键的结构差异及其在加成上的不同。2、熟练掌握醛酮的化学性质,理解亲核加成反应历程。3、掌握醛与酮在化学性质上的差异,如氧化反应、歧化反应等。,醛和酮都是分子中含有羰基(碳氧双键)的化合物,3,醛和酮均含有羰基官能团:羰基碳原子上至少连有一个氢原子的叫醛:CHO 或 叫醛基。,羰基碳原子上同时连有两个烃基的叫酮。,4,(一)结构,在醛(Aldehydes)和酮(Ketones)分子中,都含有一个共同的官能团羰基,故统称为羰基化合物,醛分子中,羰
2、基至少要与一个氢原子直接相连,故醛基一定位于链端。,C,O,s,p,2,键角接近120,第一节结构和命名,C=O双键中氧原子的电负性比碳原子大,所以电子云的分布偏向氧原子,故羰基是极化的,氧原子上带部分负电荷,碳原子上带部分正电荷。,5,sp2,易受亲核试剂进攻,发生亲核加成,(1)醛酮的结构,甲醛的结构,羰基电子云示意图,偶极矩 2.27D,偶极矩 2.85D,6,分类:根据烃基的不同,可将醛、酮分为:脂肪族醛、酮,芳香族醛、酮;饱和醛、酮,不饱和醛、酮;根据醛、酮分子中羰基的个数,可分为:一元醛、酮,二元醛、酮等;根据酮羰基所连的两个烃基是否相同,分为:单酮,混酮。,7,醛 酮,8,(二)
3、命名,1.普通命名法,醛按氧化后生成的羧酸命名,酮看作是甲酮的衍生物。,CH3CH2CHO CH2=CHCHO 丙醛 丙烯醛,甲基乙基甲酮(甲乙酮),9,-甲基丁醛-甲氧基丁醛-苯基丙烯醛,甲基异丙基酮 甲基乙烯基酮,醛,酮,乙酰苯(苯乙酮),标记取代基位置。,10,2.系统命名法,环己酮,2-氧代环己基甲醛,4-氧代戊醛,3-烯丙基-2,4-戊二酮,4-Oxopentanal,3-Allyl-2,4-pentanedione,Cyclohexanone,2-Oxocyclohexane carbaldehyde,11,脂肪族醛酮命名:以含有羰基的最长碳链为主链,支链作为取代基,主链中碳原子的
4、编号从靠近羰基的一端开始(酮需要标明位次):,也可用希腊字母表示靠近羰基的碳原子,其次为、.,12,例如:,(2)芳香醛、酮的命名,常将脂链作为主链,芳环为取代基:,13,(3)二元酮命名时,两个羰基的位置除可用数字标明外,也可用、表示它们的相对位置,表示两个羰基相邻,表示两个羰基相隔一个碳原子:,14,第二节物理性质,由于羰基的偶极矩,增加了分子间的吸引力,因此,醛酮的沸点比相应相对分子质量的烷烃高,但比醇低。醛酮的氧原子可以与水形成氢键,因此低级醛酮能与水混溶。脂肪族醛酮相对密度小于1,芳香族醛酮相对密度大于1。,15,室温下,甲醛为气体,12个碳原子以下的醛酮为液体,高级醛酮为固体。低级
5、醛有刺鼻的气味,中级醛(C8C13)则有果香。低级醛酮的沸点比相对分子量相近的醇低。(分子间无氢键)。,醛酮的物理性质,醛酮沸点与烷烃沸点的比较,16,由于羰基是个极性基团,分子间偶极的静电引力比较大,所以醛酮的沸点一般比相对分子量的非极性化合物(如烃类)高。,低级醛酮易溶于水,醛酮都能溶于水。丙酮能溶解很多有机化合物,是很好的有机溶剂。,17,羰基化合物在16801850cm-1处有一个强的羰基伸缩振动吸收峰。醛基C-H在2720cm-1处有尖锐的特征吸收峰。,醛酮的红外光谱,例1:乙醛的红外光谱,1,2,18,羰基若与邻近基团发生共轭,则吸收频率降低:,例2:苯乙酮的红外光谱,19,醛酮的
6、制备,烯烃 炔烃 芳烃,醇,醛 酮,羧酸,羧酸衍生物,1 氧化2 频哪醇重排,氧化,取代,还原,1 氧化 2 卤化-水解3 傅氏酰基化 4 加特曼-科赫反应,1氧化2直接醛基化,1 水合2 硼氢化-氧化,乙醛和丙酮的工业制备,一 制备概貌,20,伯醇和仲醇氧化或脱氢反应,可分别生成醛、酮。例1:,例2:,醛酮的制法,醇的氧化和脱氢,21,例3:以三氧化铬和吡啶的络合物为催化剂制醛产率高:,例4:(主要制酮):含有不饱和C=C双键的醛氧化,需采取特殊催化剂,如:丙酮-异丙醇铝(或叔丁醇铝)或三氧化铬-吡啶络合物作氧化剂达到此目的。,欧芬脑尔氧化法,羰基与羟基互换,22,例5:醇在适当的催化剂条件
7、下脱去一分子氢,生成醛酮。,该反应得到的产品纯度高,但为一吸热反应,工业上常在脱氢的同时,通入一定量的空气,使生成的氢与氧结合放出的热量供脱氢反应。这种方法叫氧化脱氢法。,23,例2:,例1:,在汞盐催化下,生成羰基化合物,除乙炔外,其他炔烃水合均生成酮:,主要生产乙醛。,炔烃水合,24,生成相应的羰基化合物,该法主要制备芳香族醛酮(因为芳环侧链上-容易被卤化。)例1:,例2:,同碳二卤化物水解,25,芳烃在无水三氯化铝催化下,与酰卤或酸酐作用,生成芳酮:,该反应也是一个芳环上的亲电取代反应:,傅-克酰基化反应,苯甲酰氯,二苯甲酮,26,加酸处理得酮,傅-克酰基化反应历程:,27,芳烃与直链卤
8、烷发生烷基化反应,往往得到重排产物,但酰基化反应没有重排现象:,酰基是间位定位基,甲基,甲氧基为邻对位取代基。在AlCl3-Cu2Cl2催化剂下,芳烃与CO、HCl作用可在环上引入一个甲酰基的产物,叫。,伽特曼-科赫反应,28,补充1:完成下列转换,补充2:完成下列转换,伽特曼-科赫反应,傅-克酰基化反应,29,芳烃侧链上的-活泼易被氧化.控制条件可生成相应的芳醛和芳酮(注意选择适当的催化剂)。,芳烃侧链的氧化,30,烯烃与CO和H2在某些金属的羰基化合物催化下,与110200、1020 MPa下,发生反应,生成多一个碳原子的醛。,羰基合成的原料多采用双键在链端的-烯烃,其产物以直链醛为主(直
9、:支=4:1)。,羰基合成,31,1 由酰卤制备,还原,RCHO+HCl,LiAlH(OBu-t)3,RCHO,与金属化合物反应,NaCCR,C6H5CdCl or(C6H5)2Cd,R2CuLi,AlCl3 低温,-H+,Cl-,二 用羧酸、羧酸衍生物制备,H2/Pd-BaSO4硫-喹啉(罗森孟法),32,2 由羧酸制备,ArCOOH,RLi,RLi,H2O,-H2O,ArCOOH+RMgX,ArCOOMgX+R H,33,ArCN,-H2O,-C10H7MgBr,n,H2O,n,H2O,H+,n,HCl,PCl5,SnCl2,ArCH=NH,H2O,ArCH=O,3 由酰胺和腈制备,34,
10、三 醛酮制备实例,*1,SnCl2/HCl,H2O,*2,*3,*4,H2O,无水醚,Lewis酸,Na2CO3/H2O,-H2O,H+,KMnO4,SOCl2,(n-C4H9)2CuLi,35,C2H5OH,SOCl2,(CH3)2CHCH2CH22Cd,无水乙醚,*5,36,四 异丙苯氧化重排-重要的工业制法,+CH3CH=CH2,AlCl3,O2,自动氧化,H+,-H2O,重排,-H+,C-O键断裂,亲核加成,+(CH3)2C=OH,+,+(CH3)2C=O,质子转移,37,第三节化学反应,(一)亲核加成反应(二)-活泼氢引起的反应(三)氧化和还原反应(四)其它反应,38,-活泼H的反应
11、(1)烯醇化(2)-卤代(卤仿反应)(3)醇醛缩合反应,醛的氧化,亲核加成氢化还原,(1)碳碳双键的亲电加成(2)碳氧双键的亲核加成(3),-不饱和醛酮的共轭加成(4)还原,C=CC=O,醛酮的结构与反应性,39,(一)亲核加成反应,(1)反应机理,碱催化的反应机理,酸催化的反应机理,40,(2)醛、酮的反应活性,羰基周围的空间拥挤程度对反应活性的影响极大,随R基的体积增大和给电子能力增加,中间体稳定性降低;,随Ar基增加,电子离域,降低了基态的焓值,增加了活化能。,41,常见的亲核试剂按照亲核的中心原子不同可分为:,碳为中心原子的亲核试剂,氧为中心原子的亲核试剂,硫为中心原子的亲核试剂,氮为
12、中心原子的亲核试剂,42,与HCN的加成,(CH3)2C=O+HCN,-OH溶液,H+H2O,-H2O,CH2=C-COOH,CH3,,-不饱和酸,-羟腈(或-氰醇),-羟基酸,碳为中心原子的亲核试剂,43,反应机理,可逆,不可逆,反应条件,反应必须在弱碱性条件下进行。,注意:由于氰化氢剧毒,易挥发。通常由氰化钠和无机酸与醛(酮)溶液反应。pH值约为8有利于反应。,44,反应特点:,1 碱性有利于反应,但反应不能在强碱性条件下 进行。碱性将引发另外的反应。,2 能发生此反应的羰基化合物是:,所有的醛,甲基酮,八个碳以下的环酮,45,例如:,1,2,3,4,46,羟基腈是一类很有用的有机合成中间
13、体。氰基-CN能水解成羧基,能还原成氨基。例如:聚-甲基丙烯酸甲酯的单体的合成:,第二步包含:水解、酯化和脱水等反应。,有机玻璃,丙酮氰醇(78%),-甲基丙烯酸甲酯(90%),47,氯甲基化反应,伽特曼-科赫反应,补充:,48,增长碳链方法之一,应用,49,与格氏试剂的加成,50,醛酮与格利雅试剂加成,后水解成醇:,强亲核试剂,利用其水解得醇反应,可以使许多卤化物转变为一定的醇:,例1:,与格利雅试剂的加成醇,51,例2:,例3:同一种醇可由不同的格利雅试剂和不同的羰基化合物生成:,52,与炔化钠的加成,R-CC-Na+,NH3(液)或乙醚,H2O,(CH3)2C-C CR,H+,OH,CH
14、2=C-CCR,CH3,H2/催,CH2=C-CH=CHR,CH3,制备共轭双烯,炔醇,53,(四)羰基与氮为中心原子的亲核试剂的加成,与氨的加成:Schiffs base的生成,CH3CH=O+NH3,CH3CH-NH,HO,H,-H2O,CH3CH=O+RNH2,CH3CH=NH,CH3CH-NR,HO,H,-H2O,CH3CH=NR,亲核加成,亲核加成,亚胺,亚胺 西佛碱,西佛碱一般是不稳定的,但是当碳氮双键与苯环共轭时,产物是稳定的。,54,西佛碱用酸水解可以生成原来的醛和酮,所以可以利用此反应来保护醛基。,55,与氨的衍生物加成,Hydroxylamine,Hydrazine,Phe
15、nylhydrazine,Semicarbazide,Oxime,Hydrazone,Phenylhydrazone,Semicarbazone,56,与氨的衍生物,例如:羟胺(NH2OH),肼(NH2NH2),2,4-二硝基苯肼和氨基脲等反应.,羟胺,例1:,例2:,肟(w),与氨的衍生物反应,57,例4:,2,4-二硝基苯肼,氨基脲,例3:,腙(zong),脲(niao),58,第一步:羰基的亲核加成,生成不稳定的加成产物;第二步:失去一分子水.,醛酮与氨衍生物的反应是加成-脱水反应.,氨衍生物对羰基的加成一般可在弱酸催化下进行,其历程和醇对羰基的加成相类似。,醛酮与氨衍生物的反应历程:,
16、59,酸催化,反应需在弱酸性的条件下进行。,60,亚胺极不稳定,极容易水解成原来的醛酮。,希夫碱还原可得仲胺。在有机合成上常利用芳醛与伯胺作用生成希夫碱,加以还原以制备仲胺。,(A)醛酮与氨的反应:,(B)醛酮与伯胺的反应生成取代亚胺(希夫碱),61,醛酮与氨衍生物的反应,也常用来对羰基化合物的鉴定和分离:(1)生成物为具有一定熔点的固体,可利用来鉴别醛酮;(2)它们在稀酸作用下可水解成原来的醛酮,因此可利用来分离、提纯醛酮。,此类反应,多出现在推结构等题中出现,62,提纯醛酮 鉴别醛酮,保护羰基,+H2N-Z,H2N-OH H2N-NH2 H2N-NH-C6H5 H2N-NH-C6H3(NO
17、2)2 羟 胺 肼 苯肼 2,4-二硝基苯肼 氨基脲(产物:肟)(产物:腙)(产物:苯腙)(产物:缩氨脲),重结晶,稀酸,+H2NR,稀酸,参与反应,应用,63,生成的含碳氮双键的化合物有顺反异构:,E型,Z型,生成的产物,尤其是腙和苯腙一般都是黄色晶体,可用于定性鉴别。故又称氨的衍生物为羰基试剂,几乎所有的醛和酮都可以与氨的衍生物 加成,64,羰基与氧为中心原子的亲核试剂的加成,与H2O的加成与ROH的加成,65,与H2O的加成,HCH=O+HOH,H2C(OH)2,CH3CH=O+HOH,(CH3)2C=O+HOH,CCl3-CH=O+HOH,CH3CH(OH)2,(CH3)2C(OH)2
18、,CCl3-CH(OH)2,(100%),(58%),(0%),三氯乙醛水合物(安眠药),有吸电子基团可以形成稳定水合物。水合物在酸性介质中不稳定。,66,将醛溶液在无水醇中通入HCl气体或其他无水强酸,则在酸的催化下,醛能与一分子醇加成,生成半缩醛。半缩醛不稳定,可以和另一分子醇进一步缩合,生成缩醛:,与醇加成,半缩醛(酮)、缩醛(酮)的生成,67,质子化,半缩醛在酸催化下,可以失去一分子水,形成一个碳正离子,然后再与另一个醇作用,最后生成稳定的缩醛:,半缩醛反应历程:,68,缩醛的反应历程:,69,反应机理,酸 催 化,70,缩醛对碱和氧化剂都相当稳定。由于在酸催化下生成缩醛的反应是可逆反
19、应,故缩醛可以水解成原来的醛和醇:,在有机合成中常利用缩醛的生成和水解来保护醛基。,71,HOCH2CH2CHCHO,OH,HCl,CH3OH,半缩醛,缩醛,分子内也能形成半缩醛、缩醛。,72,HOCH2CH2CH2CH2CH=O,H+,-H+,分子内形成半缩醛的反应机理,73,醛与二元醇反应生成环状缩醛:,例如:制造合成纤维“维尼纶”:,聚乙烯醇,甲醛,74,半缩酮,缩酮,醛的正向平衡常数大,酮的正向平衡常数小。,分子内也能形成半缩酮、缩酮。,与酮反应,75,五元和六元环状缩酮的产率较好。,76,酮也能与醇生成半缩酮或缩酮,但反应较为困难。而酮和1,2-或1,3-二元醇比较容易生成环状缩酮:
20、,常用1,2-或1,3-二元醇与生成环状缩醛以保护羰基。,77,缩醛对碱、氧化剂稳定。在稀酸溶液中易水解成醛和醇。,缩酮在稀酸中水解,生成原来的醇和酮。,78,形成缩醛或缩酮在合成中的应用,A 保护羟基,BrCH2CH2CH2CH2OH,+,BrCH2CH2CH2CH2O,H,H+,BrCH2CH2CH2CH2O,-H+,Mg,无水乙醚,BrMgCH2CH2CH2CH2O,丙酮,H3O,+,(CH3)2CCH2CH2CH2CH2OH,OH,79,B 保护羰基,BrCH2CH2CHO+HOCH2CH2OH,H+,BrCH2CH2,CH3CH2CCLi,CH3CH2CCCH2CH2,H3O,+,C
21、H3CH2CCCH2CH2CHO+HOCH2CH2OH,80,补充1:保护羰基,例1,81,补充2:保护羰基,82,R-CH2-Y,R-CH-Y+H+,-H以正离子离解下来的能力称为-H的活性或-H的酸性。,影响-H活性的因素:Y的吸电子能力。-H 周围的空间环境。负碳离子的稳定性。,判断-H活性的方法:pKa值 同位素交换的速率,-H的酸性(烯醇化,烯醇负离子),(二)-活泼氢引起 的反应,83,*1 CH3CH=CH2 pka=35,pka=16,*2,的酸性比,强。,的酸性与一元酮差不多。,*3 羰基的-H是十分活泼的。,84,酮式、烯醇式的互变异构,酸或碱,85,(1)酮-烯醇互变异构
22、,接受质子的方向,在微量酸或碱的存在下,酮和烯醇相互转变很快达到动态平衡,这种能够相互转变而同时存在的异构体叫互变异构体。(酮-烯醇互变异构),氢原子的活泼性,86,简单的醛酮(乙醛、丙酮等)的烯醇式在互变平衡混合物中含量很少(酮式的总键能大于烯醇式):,87,-二羰基化合物,由于共轭效应,烯醇式的能量低,因而比较稳定:,(1)与FeCl3显色反应(2)使溴水褪色,在一般情况下,烯醇式在平衡体系中的含量是比较少的,但随着-H活性 的增强,烯醇式也可能成为平衡体系中的主要存在形式。,7.3 76.5 最多,88,烯醇化的反应机理,烯醇负离子是一个两位负离子,氧碱性强,碳亲核性强。,+,烯醇负离子
23、 碳负离子 烯醇负离子,H+,Br2,热力学产物 动力学产物,89,醛酮的-H的卤代,在酸或碱的催化作用下,醛酮的-H被卤素取代的反应。,酸或碱,反应式,定义,Br2,+HBr,90,例2,醛、酮分子中的-H容易被卤素取代,生成-卤代醛、酮。,例1,一卤代醛、酮往往可以继续卤化成二卤代、三卤代产物,卤化反应,91,碱催化(不易控制,直至同碳三卤代物,易被碱分解):,烯醇负离子,卤代物继续反应:,-卤代醛、酮反应的历程,(分两步:1 烯醇化 2 卤素与C=C的加成 或称C=C对卤素的亲核取代),92,由于卤原子是吸电子的,碳上的氢原子在碱作用下容易离去,因此第二个氢原子更易被取代.,(B)酸催化
24、历程,酸催化可停留一卤代,93,酸催化的反应机理,碱催化的反应机理,1 只要加极少量的酸,因为反应一开始就会产生酸,此酸就能自动起催化作用。因此反应有一个诱导期,一旦酸产生,反应就会很快发生。2 对于不对称的酮,卤化反应的优先次序是:(关键是形成烯醇式)COCHR2 COCH2R COCH33 V一元卤化 V二元卤化 V三元卤化 通过控制卤素的用量,可将卤化反应控制在一元、二元、三元阶段。,1 碱催化时。碱用量必须超过1mol,因为除了催化作用外,还必须不断中和反应中产生的酸。2 对于不对称的酮,卤化反应的优先次序是:(关键是夺取-H)COCHR2 COCH2R COCH33 V一元卤化 V二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 胡勇 有机化学 教学 第九
链接地址:https://www.31ppt.com/p-6018931.html