聚合物基复合材料.ppt
《聚合物基复合材料.ppt》由会员分享,可在线阅读,更多相关《聚合物基复合材料.ppt(104页珍藏版)》请在三一办公上搜索。
1、聚合物基复合材料,目录,4.1 概述 4.2 聚合物基体4.3 纤维增强聚合物复合材料4.4 聚合物基复合材料的制备和加工4.5 聚合物复合材料的应用,4.1 概述,聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。,实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热
2、塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。,聚合物基发展史,4.2 聚合物基体,4.2.1 热固性树脂,4.2.1.1 不饱和聚酯,聚酯包括饱和聚酯和不饱和聚酯。饱和聚酯:没有非芳族的不饱和键。不饱和聚酯:含有非芳族的不饱和键,由不饱和二元羧酸或酸酐、饱和二元羧酸或酸酐与多元醇缩聚而成的具有酯键和不饱和双键的相对分子质量
3、不高的线型高分子化合物。不饱和聚酯树脂:在聚酯化缩聚反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂。,结构特点:,1、主链上含有脂键、不饱和双键。2、具有线性结构,线性不饱和聚酯。3、含有双键,可在加热、光照、高能辐射及引发剂作用 下与交联单体进行共聚,固化成具有三维网络的体型 结构。4、交联前后性能变化很大。取决于酸、醇的种类及数量。,不饱和聚酯的用途:,不饱和聚酯树脂作为玻璃钢复合材料基体树脂不饱和聚酯树脂作为涂料不饱和聚酯树脂作为胶粘剂,不饱和聚酯树脂的物理和化学性质,物理性质 不饱和聚酯树脂的相对密度在1.111.20左右,固化时体积收缩率
4、较大,固化树脂的一些物理性质如下:(1)耐热性。绝大多数不饱和聚酯树脂的热变形温度都 在5060,一些耐热性好的树脂则可达120。(2)力学性能。不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度。(3)耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、稀碱的性能较好,耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。(4)介电性能。不饱和聚酸树脂的介电性能良好。,化学性质 不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基.主链上的双键可以和乙烯基单体发生共聚交联反应,使不饱和聚酯树脂从可溶、可
5、熔状态转变成不溶、不熔状态。主链上的酯键可以发生水解反应,酸或碱可以加速该反应。若与苯乙烯共聚交联后,则可以大大地降低水解反应的发生。在酸性介质中,水解是可逆的,不完全的,所以,聚酯能耐酸性介质的侵蚀;在碱性介质中,由于形成了共振稳定的羧酸根阴离子,水解成为不可逆的,所以聚酯耐碱性较差。,聚酯链末端上的羧基可以和碱土金属氧化物或氢氧化物例如MgO,CaO,Ca(OH)2等反应,使不饱和聚酯分子链扩展,最终有可能形成络合物。分子链扩展可使起始粘度为0.11.0Pas粘性液体状树脂,在短时间内粘度剧增至103Pas以上,直至成为不能流动的、不粘手的类似凝胶状物。树脂处于这一状态时并未交联,在合适的
6、溶剂中仍可溶解,加热时有良好的流动性.,4.2.1.2 环氧树脂,分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。,定义:,分子中含有两个或两个以上环氧基团的线型有机高分子化合物。环氧基团可以位于分子链的末端、中间或成环状结构,特点:,相对分子质量不高,可与多种类型的固化剂发生交联反应形成三维网状聚合物。良好的粘结性能、力学性能、耐化学药品性、耐
7、气候性、电绝缘性、尺寸稳定性优异。是复合材料的主要基体。,环氧树脂的特性,a、具有多样化的形式:各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。b、固化方便:选用各种不同的固化剂,环氧树脂体系几乎可以在0180温度范围内固化。c、收缩率低:固化反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。d、黏附力强:分子链中固有的极性羟基和醚键,使对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提
8、高粘附强度。可做环氧结构胶。,e、力学性能高:固化后的环氧树脂体系具有具有很强的内聚力,分子结构致密,其力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。f、电绝缘性:固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料,是热固性树脂中介电性能最好的品种之一。g、化学稳定性好:固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性,其耐腐蚀性优于不饱和聚酯树脂、酚醛树脂等热固性树脂。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。h、尺寸稳定性:上述的许多性能的综合,使环氧树脂体系具有突出
9、的尺寸稳定性和耐久性。i、耐霉菌:固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。,环氧树脂的应用,土建材料 防腐地坪、防静电地坪、环氧砂浆和混凝土制品、高级路面和机场跑道、快速修补材料、加固地基基础的灌浆材料、建筑胶粘剂及涂料等,底涂一般是用来抹平地面,修补基层的一些问题,如粉化,鼓泡,同时还可以进行一定的防水处理,中涂是施工产品的重要表现,是耐磨还是防静电或者是其他要求,一般在中涂采用不同的材料和工艺,面涂一般是调色和保护作用。,修复桥梁结构,电子行业 高低压电器、电机、LED、电子元器件的绝缘及封装,4.2.1.3 酚醛树脂,优点:比环氧树脂价格便宜缺点:吸附性不好、收缩率高
10、、成型压力高、制品空隙含量高等。大量用于粉状压塑料、短纤维增强塑料。少量用于玻璃纤维复合材料、耐烧蚀材料等,很少使用在碳纤维和有机纤维复合材料中。,酚醛树脂的发展历史,1872年德国化学家拜尔首先合成了酚醛树脂。19051909年,美国科学家L.H.贝克兰对酚醛树脂及其成型工艺进行了系统的研究,1910年在柏林吕格斯工厂建立通用酚醛树脂公司,实现了工业生产。是最早合成的一类热固性树脂,也是最早工业化的热固性树脂。1911年J.W.艾尔斯沃思提出用六亚甲基四胺固化热塑性酚醛树脂,并制得了性能良好的塑料制品,获得了广泛的应用。1969年,由美国金刚砂公司开发了以苯酚甲醛树脂为原料制得的纤维,随后由
11、日本基诺尔公司投入生产。酚醛树脂的生产至今不衰,2006年世界总产量约4015kt,居热固性树脂的首位。中国自40年代开始生产,2006年产量为450kt。,4.2.1.4 呋喃树脂,糠醛或糠醇本身进行均聚或与其它单体进行共缩聚而得到的缩聚产物,习惯上称为呋喃树脂。这类树脂的品种很多,其中以糠醛苯酚树脂、糠醛丙酮树脂及糠醇树脂较为重要。树脂具优良的耐热性、化学稳定性、硬度、防水性,主要用于化工厂。阻燃性能良好,但脆性大,粘结性差。,4.2.1.5 其他热固性树脂,1.聚酰亚胺树脂:分子链中含有酰亚胺基团的芳杂环聚合物,是一种半梯形环链结构聚合物。通式:,不同的芳基,聚酰亚胺对热和氧化十分稳定,
12、并具有突出的耐辐射性和良好的电绝缘性,它可分为热固性和热塑性两种。是近年来发展较快的耐高温树脂,250度下可长期使用,无氧时可在300度下使用,零强度温度达800度。适于制造航空航天领域的复合材料。,有机硅树脂:,在有机硅聚合物中,具有实用价值和得到广泛应用的主要是由有机硅单体(如有机卤硅烷)经水解缩聚而成的主链结构为硅氧键的高分子有机硅化合物。这种主链由硅氧键构成,侧链通过硅原子与有机基团相连的聚合物,称为聚有机硅氧烷。,有机硅树脂则是聚有机硅氧烷中一类分子量不高的热固性树脂。用这类树脂制造的玻璃纤维增强复合材料,在较高的温度范围内(200250)长时间连续使用后,仍能保持优良的电性能,同时
13、,还具有良好的耐电弧性能及憎水防潮性能。,有机硅树脂的性能如下:,(1)热稳定性 有机硅树脂的Si-O键有较高的键能(363kJ/mol),所以比较稳定,耐热性和耐高温性能均很高。一般说来其热稳定性范围可达200250,特殊类型的树脂可以更高一些。(2)力学性能 有机硅树脂固化后的力学性能不高,若在大分子主链上引进氯代苯基,可提高力学性能。有机硅树脂有机硅树脂/玻璃纤维层压板的层间粘接强度较差,受热时弯曲强度有较大幅度的下降。若在主链中引入亚苯基,可提高刚性、强度及使用温度。(3)电性能 有机硅树脂具有优良的电绝缘性能,它的击穿强度、耐高压电弧及电火花性能均较优异。受电弧及电火花作用时,树脂即
14、使裂解而除去有机基团,表面剩下的二氧化硅同样具有良好的介电性能。,(4)憎水性 有机硅树脂的吸水性很低,水珠在其表面只能滚落而不能润湿。因此,在潮湿的环境条件下,有机硅树脂玻璃纤维增强复合材料仍能保持其优良的性能。(5)耐腐蚀性能 有机硅树脂玻璃纤维增强复合材料可耐浓度(质量)10%30%硫酸、10%盐酸、10%15%氢氧化钠、2%碳酸钠及3%过氧化氢。醇类、脂肪烃和润滑油对它的影响较小,但耐浓硫酸及某些溶剂(如四氯化碳、丙酮和甲苯)的能力较差。,三聚氰胺甲醛树脂:,三聚氰胺和甲醛缩聚而成,氨基塑料,大量用于制造模塑混合料、层压板材、黏合剂及其他材料,价格较昂贵。用玻璃纤维增强的三聚氰胺甲醛层
15、压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。,脲醛树脂:,由甲醛和尿素合成,是最重要的氨基树脂(塑料),与酚醛树脂相比,价格便宜,色泽浅,气味小,具有较好的抗电弧性,但耐热性差,吸水量高。脲醛模塑混合料主要用来制作电器配件、瓶盖,泡沫塑料用于隔热材料等。,4.2.2 热塑性树脂,树脂分子链都是线型或带支链的结构,分子链之间无化学键,加热熔融、冷却后硬化,此过程可逆的,可反复加工成型,占塑料的70%以上。,热塑性树脂的基本性能,1、力学性能 决定合成树脂力学性能的结构因素有以下五个:大分子链的主价力;分子间的作用力;大分子链的柔韧性;分子量;大分子链的交联密度。热塑性树脂与热固性树脂在
16、结构上的显著差别在于前者的大分子链为线型结构,而后者的大分子链为体型网状结构。由于这一结构上的差别,使热塑性树脂与热固性树脂相比在力学性能上有以下几个显著特点:具有明显的力学松弛现象;在外力作用下,形变的能力较大,即当应变速度不大时,可具有相当大的断裂延伸率;抗冲击性能好。,2、电学性能,热塑性树脂的电性能按其大分子的极性不同可分成以下几类:(1)非极性:这类树脂如聚乙烯、聚丁二烯、聚四氟乙烯等。非极性树脂具有优异的绝缘性能,对腐蚀性介质稳定,可作为高频率的电解质。(2)弱极性:这类树脂如聚苯乙烯、聚异丁烯等。弱极性与极性的树脂可用于中频率的电工技术。(3)极性:这类树脂如聚氯乙烯、聚乙酸乙烯
17、酯、聚酰胺、聚甲基丙烯酸甲酯等。(4)强极性:这类树脂如聚酯。强极性树脂只能作为低频率的介电体。,热塑性树脂的应用,4.2.2.1 聚烯烃,聚烯烃树脂是一类发展最快、品种最多、产量最大的热塑性树脂,主要品种有聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯等。,4.2.2.2 聚酰胺,聚酰胺商品名又称尼龙(Nylon)或锦纶。聚酰胺是主链上含有许多重复酰胺基团的一大类线型聚合物,品种很多。通常由-氨基酸或内酰胺开环聚合而得,或由二元酸和二元胺经缩聚反应而得。,缩聚聚合,开环聚合,聚酰胺分子链中的酰胺基团可以相互作用形成氢键,使聚合物有较高的结晶度和熔点。各种聚酰胺的熔点随高分子主链上酰胺基团的浓度和间距而变
18、化,熔点相差较大,约在140280之间。聚酰胺的熔点虽较高,但其热变形温度都较低,长期使用温度低于80。,由于存在牢固的氢键,具有良好的力学性能,比抗张强度高于金属,比抗压强度与金属相近,可作为替代金属的材料。因聚酰胺分子中含有的酰胺基团极性大,故吸水率较高,电绝缘性能较差。抗张和抗压强度随吸湿量增加而降低,伸长率增加。尼龙在干态下的抗冲击强度较低,随含水量增加冲击性能提高。聚酰胺树脂用玻璃纤维增强后其热形温度会明显提高,线膨胀系数也会降低很多。GF增强抗张强度可提高2-3倍。,5.当采用玻璃纤维增强后,虽不能保证明显降低吸湿性,但可以明显改善使用性能。6.弹性模量的增加和蠕变性能的改善,能大
19、大提高聚酰胺吸湿时的尺寸稳定性。聚酰胺对大多数化学试剂具有良好的稳定性,耐油性较好(如植物油、动物油及矿物油),对碱的稳定性亦较好,但不耐极性溶剂,如苯酚、甲酚等。,尼龙的应用,PA消费结构图,4.2.2.3 聚碳酸酯,聚碳酸酯是在分子链中含有碳酸酯的一类高分子总称。-(-O-R-O-CO-)n-根据R不同,可以是脂肪族、脂环族、芳香族、或脂肪族芳香族的聚碳酸酯但从物理性能和加工性来考虑,只有双酚A型的芳香族聚碳酸酯(PC)获得工业化和实际应用PC主链由柔软的碳酸酯链与刚性的苯环相连接而成为无定形热塑性树脂,透明,透光率87-91,主要性能:,相对密度为1.20,熔点为220230,可溶于二氯
20、甲烷、间甲酚、环己酮和二甲基酰胺等,在乙酸乙酯、四氢呋喃和苯中溶胀。力学性能十分优良,尤其是极好的抗冲击性能,抗冲击强度是热塑性塑料中最好的一种,注射模塑材料的冲击韧性大于20kJ/,断裂伸长率为60%,弯曲弹性模量2.22.5GPa。热变形温度达到130140,加GF后HDT可达150-160,具有良好的耐寒性,脆化温度为-100,使用温度范围-100-135。,它的吸水率很低,在较广的温度范围和潮湿条件下,仍具有较好的介电性能。具有良好的电性能以及耐寒、耐热、自熄等特点,是性能最优异的热塑性塑料之一。制品容易产生应力开裂,耐溶剂、耐碱性能差,高温易水解,摩擦因素大,无自润滑性,耐磨性和耐疲
21、劳性都较低。PC作为基体树脂可以和各种纤维、填料复合成各种功能、增强复合材料,如导电、增强、高抗冲、半透明复合材料等。,聚碳酸酯的应用,PC消费结构图,4.2.2.4 聚甲醛,分为甲醛的均聚物和与少量其他单体共聚的共聚甲醛两种。主要为共聚聚甲醛,因为合成工艺简单,易于成型加工。是一种没有侧链、高密度、高结晶性的线型聚合物,具有优异的综合性能。熔融温度为180 左右,脆化温度为-40,可在-40-100下长期使用。,聚甲醛的力学性能相当好,它具有较高的强度的弹性模量,摩擦系数小,耐磨性能好。聚甲醛还具有高度抗蠕变和应力松弛的能力。聚甲醛尺寸稳定性好,吸水率很小,所以吸水率对其力学性能的影响可以不
22、予考虑。聚甲醛有较好的介电性能,在很宽的频率和温度范围内,它的介电常数和介质损耗角正切值变化很小。聚甲醛的耐热性较差,在成型温度下易降解放出甲醛,一般在造粒时加入稳定剂。若不受力,聚甲醛可在140下短期使用,其长期使用温度为85。聚甲醛耐气候性较差,经大气老化后,一般性能均有所下降。但它的化学稳定性非常优越,特别是对有机溶剂,其尺寸变化和力学性能的降低都很少。受强酸侵蚀,耐候性差,粘结性差,热分解与软化温度接近,故熔融加工困难。,聚甲醛的应用,POM消费结构图,4.2.2.5 氟树脂,氟树脂是一类由乙烯分子中氢原子被氟原子取代的后的衍生物合成的聚合物。氟树脂的分子链结构中由于有C-F键,碳链外
23、又有氟原子形成的空间屏蔽效应,故其具有优异的化学稳定性、耐热性、介电性、耐老化性和自润滑性等。主要的品种有聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙烯(PVDF)和聚氟乙烯(PVF),其中聚四氟乙烯占90%以上等。,聚四氟乙烯能在-250260长期连续使用,它不溶解或溶胀于任何已知的溶剂,即使在高温下,王水对它也不起作用,俗称塑料王。它还具有极低的静摩擦系数以及优异的润滑性、阻燃性和耐大气老化性能等,聚四氟乙烯是塑料中摩擦因数最小者。但不容易成型加工,需用类似于粉末冶金法冷压与烧结相结合的方法加工。聚三氟氯乙烯长期使用的温度范围低于聚四氟乙烯,为-200200,但具有较高的硬
24、度、较低的渗透性和良好的耐蠕变性,并且更容易成型加工。,聚偏氟乙烯长期使用温度范围为-40150,其拉伸强度、抗压强度都比聚四氟乙烯高得多,是氟树脂中韧性最好的一种,并且可用于一般热塑性塑料的加工方法进行加工成型。聚氟乙烯最高使用温度为120,具有氟树脂中最高的拉伸强度和最低的气体透过系数,和极优异的耐气候性,在大气中使用寿命长达25年,是一种极优的耐老化材料。表面敷贴有聚氟乙烯薄膜的玻璃纤维增强复合材料可大大提高室外使用寿命。,氟树脂的应用,4.3纤维增强聚合物复合材料,纤维增强材料 在现代复合材料的发展历史中,纤维增强材料是最大的功臣,也可以说是现代复合材料的支柱。最早使用的复合材料就是玻
25、璃纤维增强塑料,至今在高技术新材料领域纤维增强复合材料仍然在发挥重要的作用。为了进一步提高复合材料的性能,纤维增强材料的研究与开发显得特别活跃,先后开发出几十种纤维增强材料。主要有玻璃纤维、芳纶纤维(kevlar纤维)、尼龙纤维、聚乙烯纤维、碳纤维、硼纤维、碳化硅纤维、氧化铝纤维以及金属纤维(如钨、钼、不锈钢丝等)。其中在各类复合材料中得到大量使用的是玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤维等。,4.3.1 玻璃纤维增强热塑性塑料,玻璃纤维是由含有各种金属氧化物的硅酸盐类,经熔融后以极快的速度抽丝而成。性能优异的无机非金属材料,应用广泛。质地柔软,可纺织成各种玻璃布、玻璃带等织物。,性能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 聚合物 复合材料
链接地址:https://www.31ppt.com/p-6018480.html