统计学第7讲参数估计.ppt
《统计学第7讲参数估计.ppt》由会员分享,可在线阅读,更多相关《统计学第7讲参数估计.ppt(85页珍藏版)》请在三一办公上搜索。
1、第7章 参数估计,补充:大数定律,1.独立同分布大数定律 2.贝努里大数定律,独立同分布大数定律,大数定律是阐述大量同类随机现象的平均结果的稳定性的一系列定理的总称。设X1,X2,是独立同分布的随机变量序列,且存在有限的数学期望E(Xi)和方差D(Xi)2(i=1,2,),则对任意小的正数,有:,大数定律(续),该大数定律表明:当n充分大时,相互独立且服从同一分布的一系列随机变量取值的算术平均数,与其数学期望的偏差小于任意小的正数概率接近于1。该定理给出了平均值具有稳定性的科学描述,从而为使用样本均值去估计总体均值(数学期望)提供了理论依据。,贝努里大数定律,设m是n次独立重复试验中事件A发生
2、的次数,p是每次试验中事件A发生的概率,则对任意的 0,有:,它表明,当重复试验次数n充分大时,事件A发生的频率m/n依概率收敛于每次事件A发生的概率阐明了频率具有稳定性,提供了用频率估计概率的理论依据。,案例一:参数估计在企业市场规划中应用,例 张先生是台湾某集团的企划部经理,在今年的规划中,集团准备在某地新建一家新的零售商店。张先生目前正在做这方面的准备工作。其中有一项便是进行市场调查。在众多考虑因素中,经过该地行人数量是要考虑的一个很重要的方面。张先生委托他人进行了两个星期的观察,得到每天经过该地人数如下:1544,1468,1399,1759,1526,1212,1256,1456,1
3、553,1259,1469,1366,1197,1178将此数据作为样本,商店开张后经过该地的人数作为总体。在95%的置信度下,能否知道每天经过此地的人数?,案例二:参数估计在品牌认知度中应用,例 某食品厂准备上市一种新产品,并配合以相应的广告宣传,企业想通过调查孩子们对其品牌的认知情况来评估广告的效用,以制定下一步的市场推广计划。他们在该地区随机抽取350个小孩作访问对象,进行儿童消费者行为与消费习惯调查,其中有一个问句是“你听说过这个牌子吗?”,在350个孩子中,有112个小孩的回答是“听说过”。根据这个问句,可以分析这一消费群体对该品牌的认知情况。食品厂市场部经理要求,根据这些样本,给定
4、95的置信度,估计该地区孩子认知该品牌的比例。,第7章 参数估计,7.1 参数估计的一般问题 7.2 一个总体参数的区间估计 7.3 两个总体参数的区间估计 7.4 样本容量的确定,7.1 参数估计的一般问题,7.1.1 估计量和估计值7.1.2 点估计和区间估计7.1.3 评价估计量的标准,7.1.1 估计量和估计值,估计量:用于估计总体参数的随机变量如样本均值,样本比例、样本方差等例如:样本均值x 就是总体均值 的一个估计量估计值:估计总体参数时计算出来的统计量的具体值如果样本均值 x=80,则80就是的估计值,7.1.2 点估计和区间估计,点估计 用样本的估计量直接作为总体参数的估计值例
5、如:用样本均值直接作为总体均值的估计例如:用样本方差直接作为总体方差的估计例:某企业工人日产量进行抽样调查,样本人均日产量为35件,样本优质率为85%.按点估计,可推断该企业总体人均日产量为35件,总体优质品率为85%.优点:简单、具体明确 缺点:没有给出估计值接近总体参数的程度,也无法说明估计结果有多大的把握程度。,(一)常用的点估计量,1.总体均值点估计量(样本均值),2.总体方差与标准差点估计量(样本方差与标准差)3.总体比率(成数)点估计量(样本成数),(二)点估计的方法,(1)极大似然估计(最大似然法),(2)矩法,矩就是随机变量的各阶数值特征。,矩估计法的具体做法如下:,区间估计,
6、区间估计:根据样本统计量的抽样分布对样本统计量与总体参数的接近程度给出一个概率度量实质是在点估计的基础上,给出总体参数估计的一个区间范围,不仅可说明样本统计量与总体参数的接近程度,而且能说明估计结果的把握程度。包括置信区间和置信水平两个要素。例如:某班级平均分数在7585之间,置信水平是95%,置信区间,置信下限,置信上限,置信区间和置信水平,由样本统计量所构造的总体参数的估计区间称为置信区间。最小值称为置信下限,最大值称为置信上限。,称为总体参数的置信区间。(1-称为置信水平,表示如果将构造置信区间的步骤重复多次,置信区间中包含总体参数的次数所占的比率。为显著性水平,是总体参数未在区间内的比
7、例,也称风险值取值大小由实际问题确定。常用的为0.01,0.05,0.10,相应的置信水平值有 99%,95%,90%,由于 作为总体参数,是固定不变的常数,它或在给出的区间,内,或在该区间外,概率只能是0或1,不可能是1-,怎样解释这个概率的含义?用,去框,估计结论或者正确或者错误,但是如果多次重复估计的话,则平均100次估计中,只有100 次估计错误,有100(1-)估计正确。1-表示将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例。,如何理解1-?,7.1.3 评价估计量的标准,参数估计中,用来估计总体参数的统计量很多,到底选择哪个统计量作为总体参数的估计量呢?这
8、涉及估计量的评价标准。评价标准:无偏性,有效性,一致性,无偏性,估计量抽样分布的数学期望等于被估计的总体参数,也就是样本统计量的分布以总体参数真值为中心。,P(),B,A,无偏,有偏,有效性,对同一总体参数的两个无偏点估计量,更小标准差的估计量更有效,如样本平均数的方差比样本中位数的方差要小,所以作为估计量,样本平均数更有效,一致性,随着样本容量的增大,估计量的值越来越接近被估计的总体参数。一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数。(大数定理),第7章 参数估计,7.1 参数估计的一般问题7.2 一个总体参数的区间估计 7.3 两个总体参数的区间估计 7.4 样本容量的确定
9、,总体参数,2已知,2未知,大样本,小样本,正态总体,正态分布,正态分布,t 分布,7.2 一个总体参数的区间估计,大样本,小样本正态总体,总体均值的区间估计(已知:正态总体,或非正态总体、大样本),1.假定条件方差()已知总体服从正态分布总体如果不是正态分布,可由正态分布来近似(n 30)使用标准正态分布统计量,总体均值 在1-置信水平下的置信区间为,公式推导,(例题分析),【例】一家食品生产企业以生产袋装食品为主,为对产品质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布,且
10、总体标准差为10g。试估计该批产品平均重量的置信区间,置信水平为95%。,例题分析,解:已知N(,102),n=25,1-=95%,z/2=1.96。根据样本数据计算得:总体均值在1-置信水平下的置信区间为,在置信水平95%下,该食品平均重量的置信区间为101.44g109.28g,总体均值的区间估计(未知、大样本),实际计算时,所研究总体的标准差通常未知,可以用以往调查的总体标准差来代替,大样本的时候也可以用样本标准差来代替。使用正态分布统计量 z,总体均值 在1-置信水平下的置信区间为,(例题分析),【例】一家保险公司收集到由36投保个人组成的随机样本,得到每个投保人的年龄(周岁)数据如下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 参数估计

链接地址:https://www.31ppt.com/p-6015795.html