经济数学4.1定积分的概念与性质.ppt
《经济数学4.1定积分的概念与性质.ppt》由会员分享,可在线阅读,更多相关《经济数学4.1定积分的概念与性质.ppt(49页珍藏版)》请在三一办公上搜索。
1、,4.1 定积分概念与性质,4.3 积分的基本公式,经济数学基础 第4章,ESC,第4章 积分及其应用,4.4 换元积分法,4.2 不定积分概念与性质,4.5 分部积分法,4.6 无限区间的广义积分,4.7 积分学的应用,一.定积分定义,ESC,4.1 定积分概念与性质,二.定积分的几何意义,4.1 定积分概念与性质,三.定积分的性质,ESC,一.定积分定义,规则图形 的面积,矩形的面积=长 宽.,长,宽,高,下底,上底,直角梯形的面积=,中位线,长为,直角梯形的面积可用矩形面积计算.,ESC,一.定积分定义,一.定积分定义,用若干条平行于 轴及 轴的直线 将图形分割,所求面积应为被分割的 所
2、有小面积之和.,如左图,将其放入平面直角坐标系中.,我们分析:由三条直线和一条曲 线围成,其中两条直线互相平行,第三条 直线与这两条直线垂直,另一边为曲线,称这样的图形为曲边梯形.,对四周的不规则图形,面积怎么求?只要将其求出,则大的不规则图形面 积也即求出.,ESC,?,?,?,?,?,?,?,?,?,?,求不规则图形 的面积问题,其中,中间部分为矩形,易求面积.,求曲边梯形 的面积问题,ESC,一.定积分定义,案 例,如何求曲边梯形的面积?,将曲边梯形放在平面直角坐标系中,则由连续曲线,称为曲边梯形.,直线,面积,ESC,一.定积分定义,直,曲,在区间 上任意选取分点,每个小区间的长度为,
3、其中最长的记作,=,=,我们从计算矩形面积出发计算曲边梯形面积.,(1)分割分曲边梯形为 个小曲边梯形,ESC,一.定积分定义,=,=,过每个分点()作 轴的垂线,把曲边梯形分成 个窄曲边梯形.,(1)分割分曲边梯形为 个小曲边梯形,用 表示所求曲边梯形的面积.,表示第 个小曲边梯形面积,则有:,ESC,一.定积分定义,=,=,(2)近似代替用小矩形的面积代替小曲边梯形的面积,在每一个小区间 上任选一点(),用与小曲边梯形同底,以 为高的小矩形的面积 近似代替小曲边梯形的面积,即,ESC,一.定积分定义,=,=,(3)求和求 个小矩形面积之和,个小矩形构成的阶梯形的面积是,这是原曲边梯形面积的
4、一个近似值.即,ESC,一.定积分定义,(4)取极限由近似值过渡到精确值,分割区间 的点数越多,即 越大,且每个小区间的长度越短,即分割越细,阶梯形的面积,即和数 与曲边梯形面积 的误差越小.,现将区间 无限地细分下去,并使每个小区间的长度 都趋于零,这时,和数的极限就是原曲边梯形面积的精确值.,动态描述阶梯形面积 与曲边梯形面积的 无限接近过程,ESC,一.定积分定义,案 例,如何求曲边梯形的面积?,面积,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,
5、一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,A,一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,A,一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,A,一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四步:,A,一.定积分定义,案 例,如何求曲边梯形的面积?,(1)分割;(2)近似代替;(3)求和;(4)取极限.,经以下四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经济 数学 4.1 积分 概念 性质
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6015172.html