组合数学3.3常系数线性非齐次递推关系.ppt
《组合数学3.3常系数线性非齐次递推关系.ppt》由会员分享,可在线阅读,更多相关《组合数学3.3常系数线性非齐次递推关系.ppt(18页珍藏版)》请在三一办公上搜索。
1、3.3常系数线性非其次递推关系,3.3.1 非其次递推关系 3.3.2 举例,3.3.1 非其次递推关系,常系数线性非其次递推关系 anc1an-1c2an-2ckan-k F(n)()其中c1,c2,ck是实数常数,ck0;F(n)是只依赖于n且不恒为0的函数。相伴的齐次递推关系 anc1an-1c2an-2ckan-k(),3.3.1 非其次递推关系,定理 若anx(n)为递推关系(3.3.1)相伴的齐次递推关系()的通解,any(n)为递推关系()的一个特解,则anx(n)y(n)为递推关系()的通解。,3.3.1 非其次递推关系,定理 设常系数线性非齐次递推关 anc1an-1c2an
2、-2ckan-k F(n)其中c1,c2,ck是实数常数,ck0;且F(n)(btntbt-1nt-1b1n b0)Sn 其中b1,b2,bt和S是实数常数。当S是相伴的线性齐次递推关系的特征方程的m(m0)重根时,存在一个下述形式的特解:annm(ptntpt-1nt-1p1np0)Sn 其中p1,p2,pt为待定系数。,3.3.2 举例,例 解递归解(1)相伴齐次递推关系anan-1()()的特征方程x10()的特征根 x1()的通解ana1na(a为任意常数),3.3.2 举例,(2)由于F(n)nn1n且s1是()的1重 根,所以得()的一个特解形如 ann1(p1np0)1n(p1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 组合 数学 3.3 系数 线性 非齐次递推 关系
链接地址:https://www.31ppt.com/p-6014271.html