线性代数课件第二章.ppt
《线性代数课件第二章.ppt》由会员分享,可在线阅读,更多相关《线性代数课件第二章.ppt(169页珍藏版)》请在三一办公上搜索。
1、,一、矩阵概念的引入,二、矩阵的定义,三、小结,1 矩 阵,1.线性方程组,的解取决于,系数,常数项,一、矩阵概念的引入,对线性方程组的研究可转化为对这张表的研究.,线性方程组的系数与常数项按原位置可排为,2.某航空公司在A,B,C,D四城市之间开辟了若干航线,如图所示表示了四城市间的航班图,如果从A到B有航班,则用带箭头的线连接 A 与B.,四城市间的航班图情况常用表格来表示:,发站,到站,这个数表反映了四城市间交通联接情况.,二、矩阵的定义,由 个数排成的 行 列的数表,称为 矩阵.简称 矩阵.,记作,简记为,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.,主对角线,副对角线,例
2、如,是一个 实矩阵,是一个 复矩阵,是一个 矩阵,是一个 矩阵,是一个 矩阵.,例如,是一个3 阶方阵.,几种特殊矩阵,(2)只有一行的矩阵,称为行矩阵(或行向量).,只有一列的矩阵,称为列矩阵(或列向量).,称为对角矩阵(或对角阵).,(4)元素全为零的矩阵称为零矩阵,零矩阵记作 或.,注意,不同阶数的零矩阵是不相等的.,例如,记作,(5)方阵,称为单位矩阵(或单位阵).,同型矩阵与矩阵相等的概念,1.两个矩阵的行数相等,列数相等时,称为同型矩阵.,例如,为同型矩阵.,线性变换.,系数矩阵,线性变换与矩阵之间存在着一一对应关系.,若线性变换为,称之为恒等变换.,单位阵.,线性变换,这是一个以
3、原点为中心旋转 角的旋转变换.,例2 设,解,三、小结,(1)矩阵的概念,(2)特殊矩阵,方阵,行矩阵与列矩阵;,单位矩阵;,对角矩阵;,零矩阵.,思考题,矩阵与行列式的有何区别?,思考题解答,矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同.,一、矩阵的加法,二、数与矩阵相乘,三、矩阵与矩阵相乘,四、矩阵的其它运算,五、小结,2.2 矩阵的运算,、定义,一、矩阵的加法,设有两个 矩阵 那末矩阵 与 的和记作,规定为,说明 只有当两个矩阵是同型矩阵时,才能进行加法运算.,例如,2、矩阵加法的运算规律,1、定义,二、数与矩
4、阵相乘,2、数乘矩阵的运算规律,矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.,(设 为 矩阵,为数),、定义,并把此乘积记作,三、矩阵与矩阵相乘,设 是一个 矩阵,是一个 矩阵,那末规定矩阵 与矩阵 的乘积是一个 矩阵,其中,例,设,例2,故,解,注意只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘.,例如,不存在.,、矩阵乘法的运算规律,(其中 为数);,若A是 阶矩阵,则 为A的 次幂,即 并且,注意矩阵不满足交换律,即:,例 设,则,但也有例外,比如设,则有,例3 计算下列乘积:,解,解,=(,),解,例4,由此归纳出,用数学归纳法证明,当 时,显然成立.,假设 时成立
5、,则 时,,所以对于任意的 都有,定义 把矩阵 的行换成同序数的列得到的新矩阵,叫做 的转置矩阵,记作.,例,、转置矩阵,四、矩阵的其它运算,转置矩阵的运算性质,例5 已知,解法1,解法2,2、方阵的行列式,定义 由 阶方阵 的元素所构成的行列式,叫做方阵 的行列式,记作 或,运算性质,3、对称阵与伴随矩阵,定义,设 为 阶方阵,如果满足,即那末 称为对称阵.,对称阵的元素以主对角线为对称轴对应相 等.,说明,例6 设列矩阵 满足,证明,例7 证明任一 阶矩阵 都可表示成对称阵与反对称阵之和.,证明,所以C为对称矩阵.,所以B为反对称矩阵.,命题得证.,定义,行列式 的各个元素的代数余子式 所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 课件 第二
链接地址:https://www.31ppt.com/p-6014100.html