线性代数第4章线性方程组解的结构.ppt
《线性代数第4章线性方程组解的结构.ppt》由会员分享,可在线阅读,更多相关《线性代数第4章线性方程组解的结构.ppt(30页珍藏版)》请在三一办公上搜索。
1、-1-,第四章,线性方程组的解的结构,4.4 线性方程组在几何中的应用,4.3 非齐次线性方程组解的结构,4.2 齐次线性方程组解的结构,4.1 线性方程组解的存在性定理,-2-,4.1 线性方程组解的存在性定理,在前面的章节学习中,我们已经研究的关于线性方程组的求和存在性问题,本章将在整理前面知识点的同时,深入研究解的性质和解的结构。,-3-,(4-1),(矩阵形式),(向量形式),(原始形式),-4-,非齐次方程组解的存在性定理,对于非齐次方程组,(4-1),向量 可由A的列向量组,线性表示。,-5-,的系数行列式,Cramer法则,则方程组有唯一解,且解为:,(4-2),-6-,齐次方程
2、组解的存在性定理,(4-3),(矩阵形式),(向量形式),(原始形式),-7-,对于齐次方程组,(1),A的列向量组线性无关,(2),A的列向量组线性相关,推论1,当方程的个数m小于未知量的个数n,则(4-3)必有非零解。,-8-,有非零解,(4-4),学习书P135 例2,-9-,第四章,线性方程组的解的结构,4.4 线性方程组在几何中的应用,4.3 非齐次线性方程组解的结构,4.2 齐次线性方程组解的结构,4.1 线性方程组解的存在性定理,-10-,4.2 齐次线性方程组解的结构,(2)解集的秩是多少?,(3)解集的最大无关组(又称为基础解系)如何求?,(1)解集的特点?,称:,-11-,
3、性质1:若 是(4-3)的解,,性质2:,注:,如果(4-3)只有零解,解空间是零空间。如果(4-3)有非零解,解空间是非零空间。,性质,推论1,而在解空间中,基的概念我们在这里称为基础解系。,首先回答问题(1),-12-,线性无关;,的任一解都可以由,线性,基础解系,表示,则称,下面我们用一个例子回答第(2)和第(3)个问题,同时也是定理的例证。,(取任意实数),从而,也是(4-3)的解。,-13-,通过下面的例子,针对一般的方程组,回答所提问题.,第一步:对系数矩阵 A 初等行变换化行最简形 B,从行最简形能得到什么?,-14-,第二步:写出同解的方程组(保留第一个未知数在方程的左边,其余
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 线性方程组 结构
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6014047.html