06、单因素方差分析.ppt
《06、单因素方差分析.ppt》由会员分享,可在线阅读,更多相关《06、单因素方差分析.ppt(43页珍藏版)》请在三一办公上搜索。
1、,单因素方差分析,方差分析入门 单因素方差分析 均数两两比较的方法 趋势检验 小结,内容提要,前面提到的有关统计推断的方法,如单样本、两样本t检验等,其所涉及的对象千变万化,但归根结底都可以视为两组间的比较,如果是有一组的总体均数已知,则为单样本t检验,如果两组都只有样本信息,则为两样本t检验。但是如果遇到以下情形,该如何处理?,方差分析入门,案例 对于大学新生的入学成绩,可以通过t检验来考察男女学生间的入学成绩是否有差异?但要是想知道来自于江苏、浙江、上海、安徽等省份的学生,其入学成绩是否有差异,那么是否可以用6次t 检验来达成目的?,方差分析入门,在以上例子中,涉及的问题其实就是在单一处理
2、因素之下,多个不同水平(多组)之间的连续性观察值的比较,目的是通过对多个样本的研究,来推断这些样本是否来自于同一个总体。那么能否使用两两t 检验,例如做三组比较,则分别进行三次t检验来解决此问题呢?这样做在统计上是不妥的。因为统计学的结论都是概率性的,存在犯错误的可能。,方差分析入门,分析:用6次t 检验来考察4个省份的大学生新生入学成绩是否相同,对于某一次比较,其犯I类错误的概率为,那么连续进行6次比较,其犯I类错误的概率是多少呢?不是 6,而是1-(1-)6。也就是说,如果检验水准取0.05,那么连续进行6次t 检验,犯I类错误的概率将上升为0.2649!这是一个令人震惊的数字!结论:多个
3、均数比较不宜采用t 检验作两两比较;而应该采用方差分析!,方差分析入门,R.A.Fisher 提出的方差分析的理论基础:将总变异分解为由研究因素所造成的部分和由抽样误差所造成的部分,通过比较来自于不同部分的变异,借助F分布作出统计推断。后人又将线性模型的思想引入方差分析,为这一方法提供了近乎无穷的发展空间。,方差分析入门,总变异 随机变异 处理因素导致的变异,总变异 组内变异 组间变异,SS总 SS组内 SS组间,这样,我们就可以采用一定的方法来比较组内变异和组间变异的大小,如果后者远远大于前者,则说明处理因素的确存在,如果两者相差无几,则说明该影响不存在,以上即方差分析的基本思想。,方差分析
4、入门,方差分析的原假设和备择假设为:H0:12=kH1:k个总体均数不同或者不全相同,方差分析入门,独立性(independence):观察对象是所研究因素的各个水平下的独立随机抽样 正态性(normality):每个水平下的应变量应当服从正态分布 方差齐性(homoscedascity)各水平下的总体具有相同的方差。但实际上,只要最大/最小方差小于3,分析结果都是稳定的,应用条件,有时原始资料不满足方差分析的要求,除了求助于非参数检验方法外,也可以考虑变量变换。常用的变量变换方法有:,对数转换:用于服从对数正态分布的资料等;平方根转换:可用于服从Possion分布的资料等;平方根反正弦转换:
5、可用于原始资料为率,且取值广泛的资料;其它:平方变换、倒数变换、BoxCox变换等。,应用条件,例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组,分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得各个体的NO数据见数据文件no.sav,试问各组的NO平均水平是否相同?,单因素方差分析,分析:对于单因素方差分析,其资料在SPSS中的数据结构应当由两列数据构成,其中一列是观察指标的变量值,另一列是用以表示分组变量。实际上,几乎所有的统计分析软件,包括SAS,STATA等,都要求方差分析采用这种数据输入形式,这一点也暗示了方差分析与线性模型间千丝万缕的联系。,单因素方差分析
6、,预分析(重要):检验其应用条件,单因素方差分析,选择data 中的split file,出现如下对话框:,单因素方差分析,单因素方差分析,单因素方差分析,这里仅取其中一组结果,表明该资料符合分组正态性的条件。,单因素方差分析,注意分组检验正态性后,要先回到data菜单下的split file,如下操作取消拆分后才能进行后续的方差分析:,单因素方差分析,单因素方差分析,选入分组变量,选入因变量,给出各组间样本均数的折线图,指定进行方差齐性检验,单因素方差分析,结果分析,单因素方差分析,(1)方差齐性检验,Levene方法检验统计量为3.216,其P值为0.053,可认为样本所来自的总体满足方差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 06 因素 方差分析
链接地址:https://www.31ppt.com/p-6004524.html