概率论与数理统计第1章.ppt
《概率论与数理统计第1章.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计第1章.ppt(171页珍藏版)》请在三一办公上搜索。
1、第1章 随机事件及其概率,1.1 随机事件,1.4 全概率公式与逆概率公式,1.3 条件概率与事件的独立性,1.2 随机事件的概率,1.1 随机事件,一、随机试验,二、样本空间,三、随机事件及其发生,四、事件之间的关系和运算,在一定条件下必然发生的现象称为确定性现象.,“太阳不会从西边升起”,(1)确定性现象,“同性电荷必然互斥”,“水从高处流向低处”,实例,自然界所观察到的现象:,确定性现象,随机现象,在一定条件下可能出现也可能不出现的现象,称为随机现象.,实例1 在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况.,(2)随机现象,结果有可能出现正面也可能出现反面.,确定性现象的特征,条
2、件完全决定结果,结果有可能为:,1,2,3,4,5 或 6.,实例3 抛掷一枚骰子,观 察出现的点数.,实例2 用同一门炮向同 一目标发射同一种炮弹多 发,观察弹落点的情况.,结果:弹落点会各不相同.,实例4 从一批含有正品和次品的产品中任意抽取一个产品.,其结果可能为:,正品、次品.,实例5 过马路交叉口时,可能遇上各种颜色的交通指挥灯.,实例6 出生的婴儿可能是男,也可能是女.,实例7 明天的天气可能是晴,也可能是多云或雨.,随机现象的特征,条件不能完全决定结果,(2)随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性,概率论就是研究随机现
3、象规律性的一门数学学科.,随机现象是通过随机试验来研究的.,问题 什么是随机试验?,如何来研究随机现象?,说明,(1)随机现象揭示了条件和结果之间的非确定性联系,其数量关系无法用函数加以描述.,一、随机试验,在概率论中,把具有以下三个特征的试验称为随机试验。,(1)可以在相同的条件下重复地进行;,(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;,(3)进行一次试验之前不能确定哪一个结果会出现。,说明,(1)随机试验简称为试验,是一个广泛的术语.它包括各种各样的科学实验,也包括对客观事物进行的“调查”、“观察”或“测量”等.,(2)随机试验通常用 E 来表示.,实例“抛掷一枚
4、硬币,观察正面、反面出现的情况”.,分析,(1)试验可以在相同的条件下重复地进行;,(2)试验的所有可能结果:,正面、反面;,(3)进行一次试验之前不能确定哪一个结果会出现.,故为随机试验.,(1)抛掷一枚骰子,观察出现的点数.,(2)从一批产品中,依次任选三件,记 录出现正品与次品的件数.,同理可知下列试验都为随机试验.,(3)记录某公共汽车站某时刻的等车人数.,(4)考察某地区 10 月份的平均气温.,(5)从一批灯泡中任取一只,测试其寿命.,现代集合论为表述随机试验提供了一个方便的工具.,二、样本空间,我们把随机试验的每个基本结果称为样本点,记作e 或.全体样本点的集合称为样本空间.样本
5、空间用表示.,样本点e,实例1 抛掷一枚硬币,观察正面,反面出现的情况.,实例2 抛掷一枚骰子,观察出现的点数.,实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.,实例4 从一批灯泡中任取 一只,测试其寿命.,实例5 记录某城市120 急 救电话台一昼夜接 到的呼唤次数.,2.同一试验,若试验目的不同,则对应的样 本空 间也不同.,例如 对于同一试验:“将一枚硬币抛掷三次”.,若观察正面 H、反面 T 出现的情况,则样本空间为,若观察出现正面的次数,则样本空间为,说明 1.试验不同,对应的样本空间也不同.,说明 3.建立样本空间,事实上就是建立随机现 象的数学模型.因此,一个样
6、本空间可以 概括许多内容大不相同的实际问题.,例如 只包含两个样本点的样本空间,它既可以作为抛掷硬币出现正面或出现反面的模型,也可以作为产品检验中合格与不合格的模型,又能用于排队现象中有人排队与无人排队的模型等.,在具体问题的研究中,描述随机现象的第一步就是建立样本空间.,随机事件:,三、随机事件及其发生,通俗地讲随机事件是指随机试验中可能发生也可能不发生的结果。,根据这个说法不难发现随机事件和样本空间的子集有一一对应关系!,它们分别可以对应了样本空间=1,2,3,4,5,6的子集1,2,3,4和2,4,6,“点数不大于4”,“点数为偶数”等都为随机事件.,反过来,的每个子集都对应了该试验的一
7、个随机事件,随机事件的定义,当且仅当子集中某个样本点出现时,称事件发生,随机试验 E 的样本空间 的子集称为 E 的随机事件,简称事件.,实例 上述试验中“点数不大于6”就是必然事件.,必然事件 随机试验中必然发生的事件,不可能事件 随机试验中不可能发生的事件.,实例 上述试验中“点数大于6”就是不可能事件.,实例“出现1点”,“出现2点”,“出现6点”.,基本事件由一个样本点组成的单点集,特别地:,几点说明,例如 抛掷一枚骰子,观察出现的点数.,可设 A=“点数不大于4”,B=“点数为奇数”等等.,1)随机事件可简称为事件,并以大写英文字母 A,B,C,来表示事件,空集不含任何样本点表示不可
8、能事件,2)随机试验、样本空间与随机事件的关系,每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.,样本空间作为自身最大的子集包含所有的样本点(基本事件),表示必然事件,1事件的包含,事件发生,事件发生,设、为两个事件,如果中的基本事件都是的基本事件,则称包含于,记为,或包含,记为.,四、事件之间的关系和运算,实例 A=“长度不合格”必然导致 B=“产品不合格”,所以,事件之间的关系,2.事件的相等,若两个事件和相互包含,则称这两个事件相等,记为.,和同时发生或者同时不发生,3.事件的和(并),将事件的基本事件和的基本事件合在一起组成的一个新事件,称为 和的和事件,记为,可读成并
9、或加.有时也可记为.,实例 某种产品的合格与否是由该产品的长度与直径是否合格所决定,因此 C=“产品不合格”是A=“长度不合格”与B=“直径不合格”的并.,即,4.事件的积(交),将事件的和共有基本事件合在一起组成的一个新事件,称为和的和事件,记为,可读成交或乘.有时也可记为.,实例 某种产品的合格与否是由该产品的长度与直径是否合格所决定,设“产品合格”,“长度合格”,“直径合格”,和事件与积事件的运算性质,5.事件的差(减),从事件中将属于事件的基本事件除去,剩下的基本事件组成的新事件称为和的差事件,记为.,事件发生而事件不发生,实例 设“长度合格但直径不合格”,“长度合格”,“直径合格”.
10、,事件、不可能同时发生,6.事件的互斥(互不相容),若事件和没有共同的基本事件,则称和互斥,也称互不相容,记为.,注意 基本事件是两两互斥的.,7.事件的逆(对立事件),称必然事件和事件的差为的逆事件,记为,,如果和互逆,则也可称和互为对立事件,事件不发生,实例“骰子出现1点”“骰子不出现1点”,事件的运算规律,由集合的运算律,,易给出事件间的运算律.,设,则有,(1),交换律,(2),结合律,(3),分配律,(4),自反律,(5),对偶律,注:,上述各运算律可推广到,件的情形.,有限个或可数个事,(6),吸收律,(7),替换律,甲,乙,丙三人各射一次靶,记“甲中靶”,“乙中靶”,“丙中靶”,
11、则可用上述三,个事件的运算来分别表示下列各事件:,(1),(3),(4),(2),“甲未中靶”,“甲中靶而乙未中靶”,“三人中只有丙未中靶”,“三人中恰好有一人中靶”,(5),“三人中至少有一人中靶”,或,(10),(9),(8),“三人中至少有两人中靶”,“三人中均未中靶”,“三人中至多一人中靶”,(11),“三人中至多两人中靶”,或,(6),(7),“三人中至少有一人未中靶”,“三人中恰有两人中靶”,或,作业,P19 练习1.1 3 4 5,一、概率的统计意义,三、概率的公理化定义,二、概率的古典定义,1.2 随机事件的概率,四、概率的性质,研究随机现象,不仅关心试验中会出现哪些事件,更重
12、要的是想知道事件出现的可能性大小,也就是事件的概率.,概率是随机事件发生可能性大小的度量,事件发生的可能性越大,概率就越大!,一、概率的统计意义,定义,显然,次数为,频率.,则称,为事件 发生的,试验序号,1 2 3 4 5 6 7,2,3,1 5 1 2 4,22,25,21,25,24,18,27,251,249,256,247,251,262,258,0.4,0.6,0.2,1.0,0.2,0.4,0.8,0.44,0.50,0.42,0.48,0.36,0.54,0.502,0.498,0.512,0.494,0.524,0.516,0.50,0.502,实例 将一枚硬币抛掷 5 次、
13、50 次、500 次,各做 7 遍,观察正面出现的次数及频率.,随n的增大,频率 fn(H)呈现出稳定性,从上述数据可得,(2)抛硬币次数 n 较小时,频率fn(A)的随机波动幅度较大,但随 n 的增大,频率fn(A)呈现出稳定性.即当 n 逐渐增大时频率fn(A)总是在 0.5 附近摆动,且逐渐稳定于 0.5.,(1)频率有随机波动性,即对于同样的 n,所得的fn(A)不一定相同;,实验者,德 摩根,蒲 丰,重要结论,当实验次数 n 较小时,事件发生的频率波动幅度比较大,当 n 逐渐增大时,频率趋于稳定值,这个稳定值从本质上反映了事件在试验中出现可能性的大小.它就是事件的概率,概率的统计定义
14、,定义,在相同条件下进行n次重复试验,若事件A,发生的频率,随着试验次数n的增大而,稳定地在某个常数P附近摆动,则称P为事件A的概,率,记为P(A).,我们首先引入的计算概率的数学模型,是在概率论的发展过程中最早出现的研究对象,通常称为,古典概型,二、概率的古典定义,假定某个试验有有限个可能的结果,假定从该试验的条件及实施方法上去分析,我们找不到任何理由认为其中某一结果例如 ei,比任一其它结果ej,更有优势,则我们只好认为所有结果在试验中有同等可能的出现机会,即1/N的出现机会.,e1,e2,,eN,2,3,4,7,9,10,8,6,1,5,例如,一个袋子中装有10个大小、形状完全相同的球.
15、将球编号为110.把球搅匀,蒙上眼睛,从中任取一球.,因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.,1,3,2,4,5,6,7,8,9,10,10个球中的任一个被取出的机会都是1/10,我们用 i 表示取到 i号球,i=1,2,10.,称这样一类随机试验为古典概型.,2,且每个样本点(或者说基本事件)出现的可能性相同.,=1,2,10,则该试验的样本空间,如i=2,若随机试验满足下述两个条件:(1)它的样本空间只有有限多个样本点;(2)每个样本点出现的可能性相同.称这种试验模型为等可能概型
16、或古典概型.,称此概率为古典概率,这种确定概率的方法称为,古典方法.,这就把求古典概率的问题转化为对基,本事件的计数问题.,古典概型中事件概率的计算,设古典型随机试验E的样本空间为,则定义,对任意事件,若,事件 发生的概率,这里我们先简要复习一下计算古典概率所用到的,1.加法原理,设完成一件事有m种方式,,第一种方式有n1种方法,,第二种方式有n2种方法,;,第m种方式有nm种方法,无论通过哪种方法都可以完成这件事,,则完成这件事总共有n1+n2+nm 种方法.,2.乘法原理,设完成一件事有m个步骤,,第一个步骤有n1种方法,,第二个步骤有n2种方法,必须通过每一步骤,才算完成这件事,,,,加
17、法原理和乘法原理是两个很重要计数原理,它们不但可以直接解决不少具体问题,同时也是推导下面常用排列组合公式的基础.,k=n时称全排列,3.排列、组合的几个简单公式,1、排列:从n个不同元素取 k 个()的不同排列总数为:,4.组合:从n个不同元素取k个(1 k n)的不同组合总数为:,称为组合系数.,排列和组合的区别:,顺序不同的排列视为不同的排列,而组合与顺,序无关.,一个袋子中装有 10 个大小相同的球,其中 3,个黑球,7 个白球,求:,(1),从袋子中任取一球,这个球是黑球的概率;,(2),从袋子中任取两球,刚好一个白球一个黑球的,概率,(1),解,10 个球中任取一个,从,而根据古典概
18、率计算,的概率为,以及两个球全是黑球的概率.,一个袋子中装有 10 个大小相同的球,其中 3,个黑球,7 个白球,求:,(2),从袋子中任取两球,刚好一个白球一个黑球的,概率,解,以及两个球全是黑球的概率.,(2),10 个球中任取两球的取法有,种,其中,种取法,两个球均是黑球的取法有,种,好取到一个白球一个黑球”,为,为黑球”,则,事件“刚,事件“两个球均,例2(抽签原理)袋中有 只白球和 只黑球,它们除颜色不同外其他方面没有差别,现在将球随机地一只只摸出来,求第k次摸出的一只球为白球的概率.其中,解法1:,且每种排列机会相同:古典概型,解法2:,且每种方法机会相同:古典概型,因此,两种不同
19、的解法有相同的结果,两种解法的区别在于:,选取的样本空间不同,第一种方法把球看作“有个性”的,要顾及各白球和各黑球间的顺序因而采用排列的方法,而第二种方法则同色球不加区别,不需要注意顺序而采用组合的方法,不管采用什么样的样本空间,必须注意以下两点:,(1)同一样本空间中样本点发生的可能性必须相等;,(2)在计算样本点总数和事件的有利场合数时必须在同一个样本空间中进行,解法3:,解法4:,只考虑前k个球的情形,用排列的方法:,只考虑第k次取球的情形,例3 某城市有N部轿车,车牌号从1到N,有一个外地人到该城市去,把遇到的n部轿车的牌号抄下(可能重复抄到某些车牌号),问抄到的最大号码恰好为k的概率
20、.,解:,假设该城市的所有轿车等可能地出现在该城市的任意地方(这是合理的,因为外地人到该城市也是随机的),每部轿车被遇到的可能性可以认为相同,符合古典概型的要求,外地人抄车牌号相当于从N个元素中有放回地抽取n个元素,有利场合要求抄到的最大车牌号恰好为k,相当于抄到的车牌号必须不超过k,且必须至少抄到一次“k”,有利场合数=车牌号不大于k的取法总数,车牌号不大于(k-1)的取法总数,因此,抄到的最大号码恰好为k的概率为,在学习几何和代数时,我们已经知道公理是数学体系的基础.数学上所说的“公理”,就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步的内容.,三、概率的公理化定义,
21、即通过规定概率应具备的基本性质来定义概率.,下面介绍用公理给出的概率定义.,1933年,前苏联数学家柯尔莫哥洛夫给出了概率的公理化定义.,柯尔莫哥洛夫提出的公理为数很少且极为简单,但在此基础上建立起了概率论的宏伟大厦.,定义:,设E是随机试验,是它的样本空间,对于,E的每一件事件A 赋予一个实数,记为P(A),若P(A)满,足下列三个条件:,1.,非负性:,对每一个事件A,有,2.,完备性:,3.,完全可加性:,对任意可数个两两互不相容的,则称 P(A)为事件A的概率.,这就是概率的公理化定义,由于其定义用到较多的现代数学理论和方法,我们只作上面的简单介绍.,由概率的公理化定义可以推出概率的如
22、下性质:,四、概率的性质,性质1,证明,令,则,由概率的可列可加性得,由概率的非负性知,故由上式可得,注:,不可能事件的概率为0,但反之不然.,证毕,性质2,(有限可加性)设,是两两互不相,容的事件,则有,证明,令,既有,由概率的可列可加性得,证毕.,性质3,证明,因,且,由性质2,得,证毕.,性质4,证明,因,且,再由概率的有限可加性,即得,所以,又由概率的非负性知,则有,证毕,若,则有,性质5,对任一事件A,证明,因,由性质4,得,证毕.,性质6,注:,性质6可推广到任意有限个事件的并的情形.,例如,(加法公式),已知,求,(1),(2),(3),解,(1),因为,相容的,故有,于是,(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计
链接地址:https://www.31ppt.com/p-5992165.html