数学物理方法13积分变换法求解定解问题.ppt
《数学物理方法13积分变换法求解定解问题.ppt》由会员分享,可在线阅读,更多相关《数学物理方法13积分变换法求解定解问题.ppt(35页珍藏版)》请在三一办公上搜索。
1、1,在复变函数理论中,我们曾用拉普拉斯变换法求解常微分方程经过变换,常微分方程变成了代数方程,解出代数方程,再进行反演就得到了原来常微分方程的解,第十二章积分变换法求解定解问题,2,积分变换法是通过积分变换简化定解问题的一种有效的求解方法对于多个自变量的线性偏微分方程,可以通过实施积分变换来减少方程的自变量个数,直至化为常微分方程,这就使问题得到大大简化,再进行反演,就得到了原来偏微分方程的解积分变换法在数学物理方程(也包括积分方程、差分方程等)中亦具有广泛的用途尤其当泛定方程及边界条件均为非齐次时,用经典的分离变量法求解,就显得有些烦琐和笨挫,而积分变换法为这类问题提供了一种系统的解决方法,
2、并且显得具有固定的程序,按照解法程序进行易于求解利用积分变换,有时还能得到有限形式的解,而这往往是用分离变量法不能得到的,3,特别是对于无界或半无界的定界问题,用积分变换来 求解,最合适不过了(注明:无界或半无界的定界问题也可以用行波法求解),用积分变换求解定解问题的步骤为:,第一:根据自变量的变化范围和定解条件确定选择适当的积分变换;,对于自变量在,内变化的定解问题(如无界域,的坐标变量)常采用傅氏变换,而自变量在,内变化,的定解问题(如时间变量)常采用拉氏变换,4,第二:对方程取积分变换,将一个含两个自变量的偏微分方程化为一个含参量的常微分方程;,第三:对定解条件取相应的变换,导出常微分方
3、程的定解条件;,第四:求解常微分方程的解,即为原定解问题的变换;,第五:对所得解取逆变换,最后得原定解问题的解,5,2.傅里叶变换法解数学物理定解问题,用分离变量法求解有限空间的定解问题时,所得到 的本征值谱是分立的,所求的解可表为对分立本征值求和的傅里叶级数对于无限空间,用分离变量法求解定解问题时,所得到的本征值谱一般是连续的,所求的解可表为对连续本征值求积分的傅里叶积分 因此,对于无限空间的定解问题,傅里叶变换是一种很适用的求解方法本节将通过几个例子说明运用傅里叶变换求解无界空间(含一维半无界空间)的定界问题的基本方法,并给出几个重要的解的公式,6,下面的讨论我们假设待求解的函数,及其一阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 物理 方法 13 积分 变换 求解 问题
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5985274.html