数学思想与数学文化-第二讲数学概观.ppt
《数学思想与数学文化-第二讲数学概观.ppt》由会员分享,可在线阅读,更多相关《数学思想与数学文化-第二讲数学概观.ppt(26页珍藏版)》请在三一办公上搜索。
1、数学思想与数学文化第二讲 数学科学概观,内容,一.前言二.数学科学的内容三.数学进展的大致概况四.数学学科的特点五.数学家的思维六.数学家介绍(华罗庚、陈省身),一.前言,被后人称为“数学王子”的德国大数学家高斯(Gauss,1777-1855)曾说过:“数学是科学之王,数论是数学之王,它常常屈尊去为天文学和其他自然科学效劳,但在所有的关系中,它都堪称第一”随着科学技术的迅猛发展,数学的地位也日益提高,这是因为当今科学技术发展的一个重要特点是高度的、全面的定量化定量化实际上就是数学化因此,人们把数学看成是与自然科学、社会科学并列的一门科学,叫数学科学,二.数学科学的内容,数学科学按其内容可分成
2、五个大学科:1)纯粹(基础)数学(Pure mathematics)2)应用数学(Applied mathematics)3)计算数学(Computational mathematics)4)运筹与控制(Operational research and control)5)概率论与数理统计(Probability and mathematical statistics),三.数学进展的大致概况,数学发展的历史非常悠久,大约在一万年以前,人类从生产实践中就逐渐形成了“数”与“形”的概念,但真正形成数学理论还是从古希腊人开始的公元300多年以前,希腊数学家欧几里德(Euclid,公元前330-前2
3、75)写了几何原本一书,这是自古以来所有科学著作中发行量最广、沿用时间最长的巨著两千多年来,数学的发展大体可以分为三个阶段:17世纪以前是数学发展的初级阶段,其内容主要是常量数学,如初等几何、初等代数、;从文艺复兴时期开始,数学发展进入第二个阶段,即变量数学阶段,产生了微积分、解析几何、高等代数;从19世纪开始,数学获得了巨大的发展,形成了近代数学阶段,产生了实变函数、泛函分析、非欧几何、拓扑学、近世代数、计算数学、数理逻辑等新的数学分支,近半个多世纪以来,现代自然科学和技术的发展,正在改变着传统的学科分类与科学研究的方法“数、理、化、天、地、生”这些曾经以纵向发展为主的基础学科与日新月异的技
4、术相结合,使用数值、解析和图形并举的方法,推出了横跨多种学科门类的新兴领域,在数学科学内也产生了新的研究领域和方法,如混沌(Chaos)、分形几何(Fractal geometry)、小波分析(Wavelet transform)等可以这样说,数学发展至今,已经拥有100多个分支的科学体系,尽管如此,数学科学的核心领域还是:-代数学研究数的理论;-几何学研究形的理论;-分析学沟通形与数且涉及极限运算的部分,总结,数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的
5、部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。,四.数学学科的特点,1.抽象性2.精确性3.应用的广泛性,1.抽象性,数学研究的“形”和“数”与现实世界中的物质内涵没有直接联系。全部数学概念都具有抽象性。但都有非常现实的背景。数学抽象的特点在于:I.在数学抽象中保留了量的关系和空间形式而舍弃了其他;II.数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其他学科中的一般抽象;III.数学本身几乎完全周旋于抽象概念和它们相互关系的圈子之中.,2.精确性,数学的精确性表
6、现在数学定义的准确性,推理和计算的逻辑严格性以及数学结论的确定无疑与无可争辩性。数学中的严谨推理和一丝不苟的计算,使得每个数学结论都是牢固的、不可动摇的。这种思想方法不仅培养了科学家,而且它也有助于提高人的科学文化素质,它是全人类共有的精神财富。数学理论的严密性就要求学数学的人在学习的过程中,不仅要做习题,掌握解题方法,而且要重视和学会证明结论的思想和技巧,理解数学问题背后的精神、方法。,3.应用的广泛性,1959年5月,著名数学家华罗庚教授在人民日报上发表了大哉数学之为用的文章,精辟的叙述了数学的各种运用:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁等各方面,无处不
7、有数学的贡献。”凡是出现“量”的地方就少不了用数学,研究量的关系,量的变化关系,量的关系的变化等现象都少不了数学,数学之为用贯穿到一切科学部门的深处,而成为它们的得力助手与工具,缺少了它就不能准确刻画出客观事物的变化,更不能由已知数据推出其他数据,因而就减少了科学预见的准确性。例子:-飞机制造-沙漠风暴与数学战-通讯技术,五.数学家的思维,数学家的思维特点取决于数学的特点数学家的思维特点归纳起来就是思维的严谨性、思维的抽象性(广阔性)、思维的灵活性及思维的批判性此外,还有数学家的直觉和想象、美感和审美能力还要特别强调数学家的拼搏精神和奉献精神,他们为了发展数学,废寝忘食、勤奋钻研,甚至忘记了自
8、我数学家对数学之所以如此执着、甚至痴迷,是因为他们喜爱数学,不断地用数学中的“美”来陶冶自己 数学是一个生机勃勃的科学,有无数未解决的问题,有许多形形色色的未开垦的处女地,等待有想象力、有创新精神和坚忍不拔毅力的学者去征服!,六.数学家介绍(华罗庚、陈省身),1.华罗庚(1910-1985)-初中文凭,独步中华,华罗庚,1910年11月12日出生于江苏金坛县。父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 思想 文化 第二 概观
链接地址:https://www.31ppt.com/p-5985189.html