数学建模-支持向量机.ppt
《数学建模-支持向量机.ppt》由会员分享,可在线阅读,更多相关《数学建模-支持向量机.ppt(28页珍藏版)》请在三一办公上搜索。
1、支持向量机 support vector machine,SVM,Outline,SVM的理论基础线性判别函数和判别面最优分类面支持向量机,SVM的理论基础,传统的统计模式识别方法只有在样本趋向无穷大时,其性能才有理论的保证。统计学习理论(STL)研究有限样本情况下的机器学习问题。SVM的理论基础就是统计学习理论。传统的统计模式识别方法在进行机器学习时,强调经验风险最小化。而单纯的经验风险最小化会产生“过学习问题”,其推广能力较差。推广能力是指:将学习机器(即预测函数,或称学习函数、学习模型)对未来输出进行正确预测的能力。,过学习问题,“过学习问题”:某些情况下,当训练误差过小反而会导致推广能
2、力的下降。例如:对一组训练样本(x,y),x分布在实数范围内,y取值在0,1之间。无论这些样本是由什么模型产生的,我们总可以用y=sin(w*x)去拟合,使得训练误差为0.,SVM,由于SVM 的求解最后转化成二次规划问题的求解,因此SVM 的解是全局唯一的最优解SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中Joachims 最近采用SVM在Reuters-21578来进行文本分类,并声称它比当前发表的其他方法都好,Outline,SVM的理论基础线性判别函数和判别面最优分类面支持向量机,线性判别函数和判别面,一个线性判别函数(
3、discriminant function)是指由x的各个分量的线性组合而成的函数 两类情况:对于两类问题的决策规则为如果g(x)0,则判定x属于C1,如果g(x)0,则判定x属于C2,如果g(x)=0,则可以将x任意 分到某一类或者拒绝判定。,线性判别函数,下图表示一个简单的线性分类器,具有d个输入的单元,每个对应一个输入向量在各维上的分量值。该图类似于一个神经元。,超平面,方程g(x)=0定义了一个判定面,它把归类于C1的点与归类于C2的点分开来。当g(x)是线性函数时,这个平面被称为“超平面”(hyperplane)。当x1和x2都在判定面上时,这表明w和超平面上任意向量正交,并称w为超
4、平面的法向量。注意到:x1-x2表示超平面上的一个向量,判别函数g(x)是特征空间中某点x到超平面的距离的一种代数度量,从下图容易看出,上式也可以表示为:r=g(x)/|w|。当x=0时,表示原点到超平面的距离,r0=g(0)/|w|=w0/|w|,标示在上图中。,总之:线性判别函数利用一个超平面把特征空间分隔成两个区域。超平面的方向由法向量w确定,它的位置由阈值w0确定。判别函数g(x)正比于x点到超平面的代数距离(带正负号)。当x点在超平面的正侧时,g(x)0;当x点在超平面的负侧时,g(x)0,多类的情况,利用线性判别函数设计多类分类器有多种方法。例如可以把k类问题转化为k个两类问题,其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 支持 向量
链接地址:https://www.31ppt.com/p-5985096.html