数字设计课件第四章组合逻辑设计原理.ppt
《数字设计课件第四章组合逻辑设计原理.ppt》由会员分享,可在线阅读,更多相关《数字设计课件第四章组合逻辑设计原理.ppt(80页珍藏版)》请在三一办公上搜索。
1、2023/9/11,数字逻辑设计及应用,1,Chapter 4 Combinational Logic Design Principles,本章重点1、开关代数:公理、定理、定义2、组合电路的分析:组合电路的结构、逻辑表达式、真值表、时序图等。3、组合电路的综合(设计):逻辑抽象定义电路的功能,写出逻辑表达式,得到实际的电路。,数字逻辑设计及应用,2,Combinational logic circuit,The outputs depend only on its current inputs.each output can be specified by truth table or Bo
2、olean expression.,数字逻辑设计及应用,3,4.1 Switching Algebra,Deals with boolean values:0,1 Signal values denoted by variables(X,Y,FRED,etc.)Boolean operators:+,1、Axioms,数字逻辑设计及应用,4,2.Single Variable Theorems,Proofs by perfect induction将变量的所有取值代入定理表达式,若等号两边始终相等,则得证。,自等律,0-1律,同一律,还原律,互补律,(T1)X+0=X(T1)X1=X,(T2)
3、X+1=1(T2)X0=0,(T3)X+X=X(T3)XX=X,(T4)(X)=X,(T5)X+X=1(T5)XX=0,数字逻辑设计及应用,5,3.two-and three-variable theorems,Parenthesization or order of terms in a logical sum or logical product is irrelevant.T8logical multiplication distributes over logical additionT8logical addition distributes over logical multipl
4、ication,(T6)X+Y=Y+X(T6)XY=YX(交换律),(T7)(X+Y)+Z=X+(Y+Z)(T7)(XY)Z=X(YZ)(结合律),(T8)XY+XZ=X(Y+Z)(T8)(X+Y)(X+Z)=X+YZ(分配律),数字逻辑设计及应用,6,T9、T9、T10、T10:be used to minimize logic functions.YZ and(Y+Z)term are the redundant terms in the expression.Supplement:A+AB=A+B(消因律)A+AB=A+B,(T9)X+XY=X(T9)X(X+Y)=X(吸收律),(T10
5、)XY+XY=X(T10)(X+Y)(X+Y)=X(组合律),(T11)XY+XZ+YZ=XY+XZ(T11)(X+Y)(X+Z)(Y+Z)=(X+Y)(X+Z)(一致律),数字逻辑设计及应用,7,4.n-variable theorems,T13-equivalent transform between“AND-NOT”and“NOT-OR”.T13-equivalent transform between“OR-NOT”and“NOT-AND”.Exp.:G=XY+VWZ=?,(T12)X+X+X=X(T12)XXX=X(广义同一律),(T13)(X1X2Xn)=X1+X2+Xn(T13)
6、(X1+X2+Xn)=X1X2Xn(DeMorgan theorems),DeMorgan theorems,数字逻辑设计及应用,8,T14Generalized DeMorgans theorem,也称为“反演定理”,get the complement of a logic expression(inverse function)。keep the original operating order;complement all variables;swapping 0 and 1;swapping+and(注:如逻辑式中有带括号的表达式取反,反函数中保留非号不变。)例:F=(AB+C)E+
7、G的反函数。,(T14)F(X1,X2,Xn,+,)=F(X1,X2,Xn,+),数字逻辑设计及应用,9,finite induction(1)proving the theorem is true for n=2;(2)then proving that if the theorem is true for n=i,then it is also true for n=i+1.,数字逻辑设计及应用,10,5.Duality,Any theorem or identity in switching algebra remains true if 0 and 1 are swapped and
8、and+are swapped throughout.a logic expression:F(X1,X2,Xn,+,,)its duality:FD=F(X1,X2,Xn,+,)XYX+Y01Exp.:find the duality expression.F=(AB+AC)+1B,duality,duality,数字逻辑设计及应用,11,relation between duality and theorem 14:F(X1,X2,Xn,+,,)=FD(X1,X2,Xn,+,)正逻辑约定与负逻辑约定互为对偶关系。正逻辑“与”=负逻辑“或”正逻辑“或”=负逻辑“与”正逻辑“与非”=负逻辑“或
9、非”正逻辑“或非”=负逻辑“与非”,数字逻辑设计及应用,12,6.Using switching algebra in minimizing logic function,Exp.:(1)F=AD+AD+AB+AC+BD+ABEF+BEF(2)F=A(B+C)(BC)(3)F=AB+AC+BC+CB+CD+BD+ADE(F+G),数字逻辑设计及应用,13,7.Standard representation of logic functions,truth table definitions(p.197)literal(也可称作元素、因子)product term XYZ,ABGG,Rsum-o
10、f-products(SOP)sum term C+D+H,X+X+Wproduct-of-sums(POS)normal term(标准项),数字逻辑设计及应用,14,n-variable minterm,normal product term with n literals3-variable X,Y,Z,one combination only let one minterm be 1,one n-variable minterm represent one n-variable combination.,数字逻辑设计及应用,15,n-variable maxterm,normal su
11、m term with n literals,one maxterm,one combination only let one maxterm be 0,one n-variable maxterm represent one n-variable combination.,数字逻辑设计及应用,16,properties of minterma、所有输入组合取值中,只有一组取值能令特定的某个最小项的值为1。b、任意两个不同最小项之积为0,mimj=0 ijc、全部最小项之和为1,properties of maxterma、所有输入组合取值中,只有一组取值能令特定的某个最大项的值为0。b、任意
12、两个不同最大项之和为1,Mi+Mj=1 ijc、全部最大项之积为0,编号相同的最小项和最大项互为反函数 mi=(Mi),Mj=(mj),properties of minterm and maxterm,数字逻辑设计及应用,17,canonical sum,sum of minterms corresponding to input combination for which the function produces a 1 output.Exp.F=?=XYZ+XYZ+XYZ+XYZ+XYZ=(0,3,4,6,7),input,output,数字逻辑设计及应用,18,canonical p
13、roduct,product of maxterms corresponding to input combination for which the function produces a 0 output.F=(X+Y+Z)(X+Y+Z)(X+Y+Z)=X,Y,Z(1,2,5),数字逻辑设计及应用,19,若已知标准和,则集合中剩下的编号就可以构建标准积;反之亦然。例:XYZ(0、1、2、3)=XYZ(4、5、6、7),Conversion between maxterm list and minterm list,n variable logic function,数字逻辑设计及应用,20
14、,inverse function of a canonical logic expression:F=+mi+mj+ijIts inverse function:F=Mi Mj ij反之亦然。Representation of a logic function truth table canonical sum minterm list canonical product maxterm list,数字逻辑设计及应用,21,4.2 Combinational-Circuit Analysis,Analyzing steps:Make sure that it is combinational
15、 circuit.Find input and output variables,fill the truth table according to the circuit.Canonical sum or product.Minimizing the equation.Sometime,write the logic expression according to the circuit directly.timing diagram maybe needed.,数字逻辑设计及应用,22,Analyzing example,Input variable:,X,Y,Z,Output varia
16、ble:,F,F=X,Y,Z(1,2,5,7)=XYZ+XYZ+XYZ+XYZ,ORF=X,Y,Z(0,3,4,6)=(X+Y+Z)(X+Y+Z)(X+Y+Z)(X+Y+Z),数字逻辑设计及应用,23,Minimizing the expressionF=X,Y,Z(1,2,5,7)=XYZ+XYZ+XYZ+XYZ=XZ+YZ+XYZORF=X,Y,Z(0,3,4,6)=(X+Y+Z)(X+Y+Z)(X+Y+Z)(X+Y+Z)=(Y+Z)(X+Z)(X+Y+Z)Write the logic expression according to the circuitF=(X+Y)Z)+XYZ,数字
17、逻辑设计及应用,24,Basic structure of logic circuit,Two types two level“AND OR”;two level“OR AND”;two level“NAND NAND”;two level“NOR NOR”。,DeMorgan theorem,数字逻辑设计及应用,25,“AND-OR”and“NAND-NAND”,AND OR,NAND NAND,first-level,second-level,数字逻辑设计及应用,26,“OR-AND”and“NOR-NOR”,OR-AND,NOR-NOR,first-level,second-level,
18、数字逻辑设计及应用,27,Timing diagram,数字逻辑设计及应用,28,课堂练习,分析如下电路,1)直接写出逻辑函数表达式并化简 2)列出真值表,数字逻辑设计及应用,29,4.3 Combinational-Circuit Synthesis,Synthesis steps:analyze the word description,make sure that it could be realized by combinational-circuit;Find all input and output variable;Use truth table to represent the
19、 input-output logic relation;Use karnaugh-map to minimize the logic expression;Give the circuit diagram,数字逻辑设计及应用,30,1、circuit descriptions and designs,Exp1:design a 4-bit prime-number detector.,4-bitPrime-number detector,4-bitbinary number,N3N2N1N0,Yes or No,Yes:F=1 No:F=0,F=N3,N2,N1,N0(1,2,3,5,7,1
20、1,13),数字逻辑设计及应用,31,Exp2:alarm circuit,alarm circuit,ALARM,SECURE=WINDOWDOORGARAGE,数字逻辑设计及应用,32,2、circuit manipulations,从真值表或后面将要讲述的方法所得到的组合电路均是“与或”、“或与”结构。从CMOS电路的实现上来说,带“非”的门的速度要快些,因而在具体实现时,往往需要将所得的电路作一些电路的等效变换,成为能用带“非”的门实现。,数字逻辑设计及应用,33,3、combinational-circuit minimization,Minimizing by switching
21、algebraMinimizing by karnaugh mapMinimization methods:Minimizing the number of first-level gatesMinimizing the number of inputs on each first-level gatesMinimizing the number of inputs on the second-level gatesBasing on:T10、T10XY+XY=X;(X+Y)(X+Y)=X,数字逻辑设计及应用,34,4、Karnaugh Map,graphical representation
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 设计 课件 第四 组合 逻辑设计 原理
链接地址:https://www.31ppt.com/p-5984829.html