数字信号处理a(双语)chapter6-ztransformb.ppt
《数字信号处理a(双语)chapter6-ztransformb.ppt》由会员分享,可在线阅读,更多相关《数字信号处理a(双语)chapter6-ztransformb.ppt(90页珍藏版)》请在三一办公上搜索。
1、Chapter 6,z-Transform,6.4 The Inverse z-Transform6.5 z-Transform Theorems,Part B:Inverse ZT and ZT Theorems,6.4 The Inverse z-Transform,6.4.1 General Expression6.4.2 Inverse z-Transform by Table Look-Up Method6.4.3 Inverse z-Transform by Partial-Fraction Expansion6.4.4 Partial-Fraction Using MATLAB6
2、.4.5 Inverse z-Transform via Long Division6.4.6 Inverse z-Transform Using MATLAB,6.4.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,逆z变换是一个对X(Z)Zn-1进行的围线积分,积分路径C是一条在X(Z)收敛环域(Rx-,Rx+)内以逆时针方向绕原点一周的单围线。,围线积分路径,直接计算围线积分比较麻烦,一般不采用此法求逆z变换,求解逆z变换的常用方法有:留数定律法查表法部分分式法长除法,6.4.1 General
3、 Expression,6.4.1 General Expression,利用留数定理计算围线积分,一阶极点的留数,N 阶极点的留数,1.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,6.4.1 General Expression,Example 6.12,6.4.2 Table Look-up Method,Look up Table 6.1 on
4、 Page 253,6.4.3 Inverse z-Transform by Partial-Fraction Expansion,A rational z-transform G(z)with a causal inverse transform g(n)has an ROC that is exterior to a circleHere it is more convenient to express G(z)in a partial-fraction expansion form and then determine g(n)by summing the inverse transfo
5、rm of the individual simpler terms in the expansion,6.4.3 Inverse z-Transform by Partial-Fraction Expansion,6.4.3 Inverse z-Transform by Partial-Fraction Expansion,Solutions:Step 1-Converting G(z)into the form of proper fractions by long divisionStep 2-Summing the inverse transform of the individual
6、 simpler terms in the expansion,6.4.3 Inverse z-Transform by Partial-Fraction Expansion,6.4.3 Inverse z-Transform by Partial-Fraction Expansion,6.4.4 Partial-Fraction Using MATLAB,r,p,c=residuez(num,den)develops the partial-fraction expansion of a rational z-transform with numerator and denominator
7、coefficients given by vectors num and denVector r contains the residuesVector p contains the polesVector c contains the constantsl,num,den=residuez(r,p,c)converts a z-transform expressed in a partial-fraction expansion form to its rational form,6.4.4 Partial-Fraction Using MATLAB,6.4.5 Inverse z-Tra
8、nsform via Long Division,6.4.5 Inverse z-Transform via Long Division,6.4.6 Inverse z-Transform Using MATLAB,The function impz can be used to find the inverse of a rational z-transform G(z)The function computes the coefficients of the power series expansion of G(z)The number of coefficients can eithe
9、r be user specified or determined automatically,6.4 The Inverse z-Transform6.5 z-Transform Theorems,Part B:Inverse ZT and ZT Theorems,6.5 z-Transform Theorems,6.5 z-Transform Theorems,6.5 z-Transform Theorems,6.5 z-Transform Theorems,6.5 z-Transform Theorems,6.6 Computation of the Convolution Sum of
10、 Finite-Length Sequences6.6.1 Linear Convolution Using Polynomial Multiplication6.6.2 Circular Convolution Using Polynomial Multiplication,Part C:Convolution,6.6.1 Linear Convolution Using z-Transform,Let denote xn,0 n L,a finite-length sequence of length L+1Let denote hn 0 n M,a finite-length seque
11、nce of length M+1We shall evaluate yn=xn*hn using z-transformNote:yn is a sequence of length L+M+1,6.6.1 Linear Convolution Using z-Transform,Let X(z)denote the z-transform of xn which is a polynomial of degree L in z-1,i.e.,X(z)=x0+x1 z-1+x2 z-2+xL z-L Let H(z)denote the z-transform of hn which is
12、a polynomial of degree M in z-1 H(z)=h0+h1 z-1+h2 z-2+hM z-M,6.6.1 Linear Convolution Using z-Transform,From the convolution property of the z-transform,it follows that the z-transform of yn is simply given by Y(z)=X(z)H(z)which is a polynomial of degree L+M in z-1,i.e.,Y(z)=y0+y1 z-1+y2 z-2+yL+M z-
13、(L+M),6.6.1 Linear Convolution Using z-Transform,WhereIn the above we have assumed xn=0 for nL hn=0 for nM,6.6.1 Linear Convolution Using z-Transform,(pp.278)Example 6.30 Linear Convolution of One-Sided Sequences Using the Polynomial Multiplication Method,6.6.2 Circular Convolution Using z-Transform
14、,Let xn and hn be two length-N sequences defined for 0 n N-1 with X(z)and H(z)denoting their z-transformsLet ycn=xn N hn denote the N-point circular convolution of xn and hnLet yLn=xn*hn denote the linear convolution of xn and hn,6.6.2 Circular Convolution Using z-Transform,Let Yc(z)and YL(z)denote
15、the z-transforms of ycn and yLnIt can be shown that Yc(z)=(z-N-1)The modulo operation with respect to z-N-1 is taken by setting z-N=1(z-N-1)=z-1(z-N-1)=z-2,6.6.2 Circular Convolution Using z-Transform,(pp.279)Example 6.32 Circular Convolution of Causal Sequences Using the Polynomial Multiplication M
16、ethod,6.6.2 Circular Convolution Using z-Transform,6.6.2 Circular Convolution Using z-Transform,6.7 The Transfer Function,The transfer function is a generalization of the frequency response function.The convolution sum description of an LTI discrete-time system with an impulse response hn is given b
17、y,6.7 The Transfer Function,Taking the z-transforms of both sides we get,6.7 The Transfer Function,6.7.1 Definition,Hence,H(z)=Y(Z)/X(z)The function H(z),which is the z-transform of the impulse response hn of the LTI system,is called the transfer function or the system functionThe inverse z-transfor
18、m of the transfer function H(z)yields the impulse response hn,6.7.2 Transfer Function Expression,Consider an LTI discrete-time system characterized by a difference equationIts transfer function is obtained by taking the z-transform of both sides of the above equationThus,6.7.2 Transfer Function Expr
19、ession,Or,equivalently asAn alternate form of the transfer function is given by,6.7.2 Transfer Function Expression,Or,equivalently as1,2,M are the finite zeros,and 1,2,N are the finite poles of H(z)If N M,there are additional(N-M)zeros at z=0If N M,there are additional(M-N)poles at z=0,6.7.2 Transfe
20、r Function Expression,For a causal IIR digital filter,the impulse response is a causal sequenceThe ROC of the causal transfer function is thus exterior to a circle going through the pole furthest from the originThus the ROC is given by,6.7.2 Transfer Function Expression,Example-Consider the M-point
21、moving-average FIR filter with an impulse response,Its transfer function is then given by,6.7.2 Transfer Function Expression,The transfer function has M zeros on the unit circle at z=ej2k/M,0 k M-1There are M-1 poles at z=0 and a single pole at z=1The pole at z=1 exactly cancels the zero at z=1The R
22、OC is the entire z-plane except z=0,M=8,6.7.2 Transfer Function Expression,Example-A causal LTI IIR digital filter is described by a constant coefficient difference equation given by yn=xn-1-1.2xn-2+xn-3+1.3yn-1-1.04yn-2+0.222yn-3Its transfer function is therefore given by,6.7.2 Transfer Function Ex
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 双语 chapter6 ztransformb
链接地址:https://www.31ppt.com/p-5984531.html