排列组合问题17种方法.ppt
《排列组合问题17种方法.ppt》由会员分享,可在线阅读,更多相关《排列组合问题17种方法.ppt(41页珍藏版)》请在三一办公上搜索。
1、,解排列组合问题的十七种常用策略,完成一件事,有n类办法,在第1类办法中有 m1种不同的方法,在第2类办法中有m2 种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法,复习巩固,1.分类计数原理(加法原理),完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有:种不同的方法,2.分步计数原理(乘法原理),分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件,3.分类计数原理分步计数原理区别,分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。,解决排列
2、组合综合性问题的一般过程如下:,1.认真审题弄清要做什么事,2.怎样做才能完成所要做的事,即采取分步还 是分类,或是分步与分类同时进行,确定分多 少步及多少类。,3.确定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素.,解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略,从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.,从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。,1.排列的定义:,2.组合的定义:,3.排列数公式:,4.组合数公式:,排
3、列与组合的关键是问题与次序有无关系。,5 加法原理和乘法原理:完成任务时是分类进行还是步进行。,一.特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.,解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,7种不同的花种在排成一列的花盆
4、里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?,练习题,解一:分两步完成;,第一步选两葵花之外的花占据两端和中间的位置,第二步排其余的位置:,解二:第一步由葵花去占位:,第二步由其余元素占位:,小结:当排列或组合问题中,若某些元素或某些位置有特殊要 求 的时候,那么,一般先按排这些特殊元素或位置,然后再 按排其它元素或位置,这种方法叫特殊元素(位置)分析法。,二.相邻元素捆绑策略,例2.7人站成一排,其中甲乙相邻且丙丁相 邻,共有多少种不同的排法.,解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自
5、排。,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.,某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为(),练习题,20,三.不相邻问题插空策略,例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?,解:分两步进行第一步排2个相声和3个独唱共 有 种,,元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端,某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目
6、单中,且两个新节目不相邻,那么不同插法的种数为(),30,练习题,四.定序问题倍缩空位插入策略,例4.7人排队,其中甲乙丙3人顺序一定共有多 少不同的排法,解:,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:,(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 种方法,其余的三个位置甲乙丙共有 种坐法,则共有 种 方法,1,思考:可以先让甲乙丙就坐吗?,(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 方法,4*5*6*7,定序问题可以用倍缩法,还可转化为占位插空模型
7、处理,练习题,10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?,五.重排问题求幂策略,例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法,解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.,7,把第二名实习生分配,到车间也有7种分法,,1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(),42,2.某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法(),练习题,七.多排问题直排策略,例7.8人排成前后两排,每排4人,其中甲乙在 前排,丁在后排,
8、共有多少排法,解:8人排前后两排,相当于8人坐8把椅子,可以 把椅子排成一排.,一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.,有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是_,346,练习题,甲乙都在前排:1、都在左面4个座位=6种 2、都在右面4个座位 同上,6种 3、分列在中间3个的左右=32种 一共6+6+32=44种 甲乙都在后排:A(22)*(10+9+8+7+6+5+4+3+2+1)=110种 甲乙分列在前后两排 A(22)*12*8=192种 一共44+110+192=346种,
9、八.排列组合混合问题先选后排策略,例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装 法.,解:第一步从5个球中选出2个组成复合元共 有_种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_种方法.,根据分步计数原理装球的方法共有_,解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?,练习题,一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_ 种,192,九.小集团问题先整体局部策略,例9.用1,2,3,4,5组成没有重复数字的五位数 其中恰有两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 问题 17 方法
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5980156.html