带电粒子在磁场中的运动题型归类.ppt
《带电粒子在磁场中的运动题型归类.ppt》由会员分享,可在线阅读,更多相关《带电粒子在磁场中的运动题型归类.ppt(35页珍藏版)》请在三一办公上搜索。
1、带电粒子在磁场中的运动,一、基本型,二、范围型,三、极值型,四、多解型,五、在复合场中的运动,:定圆心,找半径,作轨迹图,结合半径、周期公式列方程解,:关键寻找引起范围的“临界轨迹”及“临界半径R0”,注意运动轨迹和磁场边界“相切”的应用。,:寻找产生极值的条件:直径是圆的最大弦;同一圆中大弦对应大的圆心角;由轨迹确定半径的极值。,:抓住多解的产生原因:(1)带电粒子电性不确定形成多解。(2)磁场方向不确定形成多解。(3)临界状态不唯一形成多解。(4)运动的重复性形成多解。,注意分析在不同的场受到的力和进入该场时的初速度,判断运动状态和大概轨迹;思路一:运用牛顿第二定律并结合运动学规律求解。思
2、路二:运用能量的角度(动能定理、功能关系等)求解,注意重力、电场力做功与路径无关,只与始末位置的重力势能、电势能有关,洛伦兹力对带电粒子不作功。,1.“带电粒子在匀强磁场中的圆周运动”的基本型问题,定圆心、定半径、定转过的圆心角是解决这类问题的前提。,注意:带电粒子在匀强磁场中的圆周运动具有对称性。带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。应用对称性可以快速地确定运动的轨迹。,例1:如图9-4所示,在y小于0的区域内存在匀强磁场,磁场方向垂直于xy平面并指
3、向纸面外,磁感应强度为B,一带正电的粒子以速度 从O点射入磁场,入射速度方向为xy平面内,与x轴正向的夹角为,若粒子射出磁场的位置与O点的距离为L,求该粒子电量与质量之比。,图9-4,【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A,向x轴作垂线,垂足为H,由与几何关系得:,带电粒子在磁场中作圆周运动,由,解得,联立解得,【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。,2.“带电粒子在匀
4、强磁场中的圆周运动”的范围型问题,带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时利用运动轨迹和磁场边界“相切”关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。,例2:如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?,图9-8,图9-9,图9-10,【解析】粒子从A点进入磁场后
5、受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。临界半径R0由,有:,;故粒子必能穿出EF的实际运动轨迹半径RR0即:,有:,。由图知粒子不可能从P点下方向射出EF,即只能从P点上方某一区域射出;又由于粒子从点A进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG直线上方射出;由此可见EF中有粒子射出的区域为PG,且由图知:,图9-12,例3:如图9-11所示S为电子射线源能在图示纸面上和360范围内向各个方向发射速率相等的质量为m、带电-e的电子,MN是一块足够大的竖直
6、挡板且与S的水平距离OSL,挡板左侧充满垂直纸面向里的匀强磁场;若电子的发射速率为V0,要使电子一定能经过点O,则磁场的磁感应强度B的条件?若磁场的磁感应强度为B,要使S发射出的电子能到达档板,则电子的发射速率多大?若磁场的磁感应强度为B,从S发射出的电子的速度为,则档板上出现电子的范围多大?,图9-11,【审题】电子从点S发出后必受到洛仑兹力作用而在纸面上作匀速圆周运动,由于电子从点S射出的方向不同将使其受洛仑兹力方向不同,导致电子的轨迹不同,分析知只有从点S向与SO成锐角且位于SO上方发射出的电子才可能经过点O;由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S点旋转的一动态圆,动态圆的每
7、一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9-12所示,最低点为动态圆与MN相切时的交点,最高点为动态圆与MN相割,且SP2为直径时P为最高点。【解析】要使电子一定能经过点O,即SO为圆周的一条弦,则电子圆周运动的轨道半径必满足,,由,得:,要使电子从S发出后能到达档板,则电子至少能到达档板上的O点,故仍有粒子圆周运动半径,,由,有:,当从S发出的电子的速度为,时,电子在磁场中的运动轨迹,作出图示的二临界轨迹,半径,,故电子击中档板的范围在P1P2间;对SP1弧由图知,对SP2弧由图知,【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运
8、动的实际轨道半径R与R0的大小关系确定范围。,3.“带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:直径是圆的最大弦;同一圆中大弦对应大的圆心角;由轨迹确定半径的极值。,例4:图9-13中半径r10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B033T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2106m/s的粒子;已知粒子质量为m=6.610-27kg,电量q=3.210-19c,则粒子通过磁场空间的最大偏转角及在磁场中运动的最长时间t各多少?,图9-13,【审题】本题粒子速率一定,所以在磁场中圆周运动半径一定,由于粒子从点O进
9、入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角不同,要使粒子在运动中通过磁场区域的偏转角最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出粒子的运动轨迹进行求解。【解析】粒子在匀强磁场后作匀速圆周运动的运动半径:,粒子从点O入磁场而从点P出磁场的轨迹如图圆O/所对应的圆弧所示,该弧所对的圆心角即为最大偏转角。由上面计算知SO/P必为等边三角形,故60此过程中粒子在磁场中运动的时间由,即为粒子在磁场中运动的最长时间。【总结】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。,
10、4.“带电粒子在匀强磁场中的圆周运动”的多解型问题抓住多解的产生原因:(1)带电粒子电性不确定形成多解。(2)磁场方向不确定形成多解。(3)临界状态不唯一形成多解。(4)运动的重复性形成多解。,例5:如图9-15所示,第一象限范围内有垂直于xoy平面的匀强磁场,磁感应强度为B。质量为m,电量大小为q的带电粒子在xoy平面里经原点O射入磁场中,初速度v0与x轴夹角=60o,试分析计算:(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大?(2)带电粒子在磁场中运动时间多长?,图9-15,图9-16,【审题】若带电粒子带负电,进入磁场后做匀速圆周运动,圆心为O1,粒子向x轴偏转,并从A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 磁场 中的 运动 题型 归类
链接地址:https://www.31ppt.com/p-5972212.html