三角形全等的判定复习.ppt
《三角形全等的判定复习.ppt》由会员分享,可在线阅读,更多相关《三角形全等的判定复习.ppt(18页珍藏版)》请在三一办公上搜索。
1、三角形全等的条件 复习课,宝坪初中数学备课组,前面的知识你忘记了吗?,让我们一起来复习一下吧,知识点,1、全等三角形的定义:,能够完全重合的两个三角形叫做全等三角形,2、全等三角形的性质:,全等三角形的对应边相等,对应角相等。,3、三角形全等的条件:,SSS SAS ASA AAS HL,4、应用:,利用全等三角形性质证明两条线段或两个角相等。,例题1,已知:如图B=DEF,BC=EF,补充条件求证:ABC DEF,(1)若要以“SAS”为依据,还缺条件;,AB=DE,(2)若要以“ASA”为依据,还缺条件;,ACB=DFE,(3)若要以“AAS”为依据,还缺条件,A=D,(4)若要以“SSS
2、”为依据,还缺条件,AB=DE AC=DF,(5)若B=DEF=90要以“HL”为依据,还缺条件,AC=DF,例2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是拿()去配.,证明题的分析思路:要证什么 已有什么 还缺什么 创造条件,注意1、证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法 2、全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时 要观察待证的线段或角,在哪两个可能全等的三角形中。有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角总之,证明过程中能用简单方法的就不
3、要绕弯路。,例3已知:如图,P是BD上的任意一点AB=CB,AD=CD.求证:PA=PC,要证明PA=PC可将其放在APB和CPB 或APD和CPD考虑,已有两条边对应相等(其中一条是公共边),还缺一组夹角对应相等,若能使ABP=CBP或ADP=CDP 即可。,创造条件,分析:,例3已知:P是BD上的任意一点AB=CB,AD=CD.求证PA=PC,证明:在ABD和CBD中 AB=CB AD=CD BD=BD ABDCBD(SSS)ABD=CBD 在ABP和CBP中 AB=BC ABP=CBP BP=BP ABP CBP(SAS)PA=PC,例4已知:ABC的顶点和 DBC的顶点A和D在BC的同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 判定 复习
链接地址:https://www.31ppt.com/p-5948344.html