半导体式物性传感器.ppt
《半导体式物性传感器.ppt》由会员分享,可在线阅读,更多相关《半导体式物性传感器.ppt(61页珍藏版)》请在三一办公上搜索。
1、第十一章半导体式物性传感器,1970年,荷兰科学家研制出了对氢离子响应的离子敏感场效应晶体管,标志着离子敏半导体传感器的诞生。由于电子技术的飞速发展,以半导体传感器为代表的各种固态传感器相继问世。这类传感器主要是以半导体为敏感材料,在各种物理量的作用下引起半导体材料内载流子浓度或分布的变化,通过检测这些物理特性的变化,即可反映被测参数值。,与各种结构型传感器相比,具有如下特点:,1)由于传感器原理是基于物理变化的,因而没有相对运动部件,可以做到结构简单,微型化。2)灵敏度高,动态性能好,输出为电物理量。3)采用半导体为敏感材料容易实现传感器集成化和智能化。4)功耗低,安全可靠。,半导体传感器也
2、存在以下一些缺点:,1)线性范围窄,在精度要求高的场合应采用线性化补偿电路。2)与所有半导体元件一样,输出特性易受温度影响而漂移,所以应采用补偿措施。3)性能参数离散性大。虽然存在上述问题,但半导体传感器仍是目前传感器发展的重要方向,尤其是大规模集成电路技术的不断发展,半导体传感器的技术也日臻完善。,半导体传感器,第一节气敏传感器第二节湿敏传感器第三节 磁敏传感器第四节色敏传感器第五节离子敏传感器,第一节 气敏传感器,所谓半导体气敏传感器,是利用半导体气敏元件同气体接触,造成半导体性质变化,借此来检测特定气体的成分或者测量其浓度的传感器的总称。,一、气敏半导体材料的导电机理,图a为烧结体N型半
3、导瓷的模型。它是多晶体,晶粒间界有较高的电阻,晶粒内部电阻较低。图中分别以空白部分和黑点部分示意表示。导电通路的等效电路如图b所示。,二、电阻型气敏器件,电阻型气敏器件在目前使用的比较广泛。按其结构,可分为烧结型、薄膜型和厚膜型三种。,烧结型 这种器件一般分为内热式和旁热式两种结构,如图 1、2、4、5电极3SnO2烧结体 1、2、4、5电极3加热器 6SnO2烧 结体7陶瓷绝缘管,内热式器件管芯体积一般都很小,加热丝直接埋在金属氧化物半导体材料内,兼作一个测量板,该结构制造工艺简单。其缺点是:热容量小,易受环境气流的影响;测量电路和加热电路之间相互影响;加热丝在加热和不加热状态下产生胀、缩,
4、容易造成与材料接触不良的现象。旁热式气敏器件的管芯是在陶瓷管内放置高阻加热丝,在瓷管外涂梳状金电极,再在金电极外涂气敏半导体材料。这种结构形式克服了内热式器件的缺点,使器件稳定性有明显提高。,2.薄膜型,薄膜型气敏器件的制作首先需处理基片(玻璃石英式陶瓷),焊接电极,之后采用蒸发或溅射方法在石英基片上形成一薄层氧化物半导体薄膜。实验测得SnO2和ZnO薄膜的气敏特性较好。,薄膜型器件外形结构如图所示1、2、5、7引线3半导体4电极6绝缘基片8加热器 这种器件具有较高的机械强度,而且具有互换性好、产量高、成本低等优点。,3.厚膜型,其结构如图所示1加热器2电极 3气敏电阻4基片 此种元件一致性较
5、好,机械强度高,适于批量生产,是一种有前途的器件。,以上三种气敏器件都附有加热器。在实际应用时,加热器能使附着在测控部分上的油雾,尘埃等烧掉,同时加速气体的吸附,从而提高了器件的灵敏度和响应速度,一般加热到200400,具体温度视所掺杂质不同而异。气敏器件的优点是:工艺简单,价格便宜,使用方便;对气体浓度变化响应快;即使在低浓度(3000mg/kg)下,灵敏度也很高。其缺点在于:稳定性差,老化较快,气体识别能力不强;各器件之间的特性差异大等。,各种可燃性气体的浓度与SnO2半导瓷传感器的电阻率变化的关系如图,三、气敏传感器的应用1、实用酒精测试仪 测试驾驶员醉酒的程度。气体传感器选用二氧化锡气
6、敏元件。当气体传感器探测不到酒精时,加在A5脚的电平为低电平;当气体传感器探测到酒精时,其内阻变低,从而使A5脚电平变高。A为显示驱动器,它共有10个输出端,每个输出端可以驱动一个发光二极管,显示推动器A根据第5脚电压高低来确定依次点亮发光二极管的级数,酒精含量越高则点亮二极管的级数越大。上5个发光二极管为红色,表示超过安全水平。下5个发光二极管为绿色,代表安全水平,酒精含量不超过0.05%。,2.气体报警器与控制器电路 如图所示。在洁净空气中,传感器的电阻较大,在负载上的输出电压RL较小。在待测气体中时,传感器的电阻变小,则RL上的输出电压增大。图(a)为报警器,超过规定浓度时,发出声光报警
7、。图(b)为控制器,超过设定浓度时,比较器翻转,输出控制信号,由驱动电路带动继电器或其它元件动作。,气体报警器及控制器原理框图(a)报警器,气体报警器及控制器原理框(b)控制器,第二节湿敏传感器,一、绝对湿度与相对湿度 所谓湿度,是指大气中所含的水蒸气量。它有两种最常用的表示方法,即绝对湿度和相对湿度。绝对湿度是指一定大小空间中水蒸气的绝对含量,可用“kg/m3”表示。绝对湿度也称水气浓度或水气密度。,绝对湿度也可用水的蒸气压来表示。设空气的水气密度为v,与之相应的水蒸气分压为pv,根据理想气体状态方程,可以得出其关系式为 m水气的摩尔质量;R摩尔气体普适常数;T绝对温度。,在实际生活中,许多
8、现象与湿度有关,如水分蒸发的快慢。然而除了与空气中水气分压有关外,更主要的是和水气分压与饱和蒸气压的比值有关。因此有必要引入相对湿度的概念。相对湿度为某一被测蒸气压与相同温度下的饱和蒸气压的比值的百分数,常用%RH表示。这是一个无量纲的值。显然,绝对湿度给出了水分在空间的具体含量,相对湿度则给出了大气的潮湿程度,故使用更广泛。,二、氯化锂湿敏电阻,氯化锂湿敏电阻是利用吸湿性盐类潮解,离子导电率发生变化而制成的测湿元件。典型的氯化锂湿度传感器有登莫(Dunmore)式和浸渍式两种。,登莫式传感器的结构如图,图中A为聚苯乙烯包封的铝管;B为用聚乙烯醋酸盐覆盖在A上的钯丝。,浸渍式传感器是在基本材料
9、上直接浸渍氯化锂溶液构成的。这类传感器的浸渍基片材料为天然树皮。它部分地避免了高温下所产生的湿敏膜的误差。由于采用了表面积大的基片材料,并直接在基片上浸渍氯化锂溶液,因此这种传感器具有小型化的特点。它适用于微小空间的湿度检测。,三、半导瓷湿敏电阻,制造半导瓷湿敏电阻的材料,主要是不同类型的金属氧化物。有一些材料电阻率随湿度的增加而下降,故称为负特性湿敏半导瓷。还有一种材料(如Fe3O4半导瓷)的电阻率随着湿度的增加而增大,称为正特性湿敏半导瓷。,1.半导瓷湿敏材料的导电机理,三种典型的金属氧化物半导瓷的湿敏特性如图:1ZnOLiO2V2O5系 2SiNa2OV2O5系 3TiO2MgOCr2O
10、3系,关于半导体湿敏材料的导电机理有多种理论。一般认为,作为湿敏材料的多晶陶瓷(也称半导瓷),由于晶粒间界的结构不够致密与缺乏规律性,不仅载流子浓度远比晶粒内部小,而且载流子迁移率也要低得多。所以,一般半导瓷的晶粒间界电阻要比体内高得多。因而半导瓷的晶粒间界便成了半导瓷中传导电流的主要障碍。正由于这种高阻效应的存在,使半导瓷具有良好的湿敏特性。,2.典型半导瓷湿敏电阻,半导瓷湿敏电阻具有较好的热稳定性,较强的抗沾污能力,能在恶劣、易污染的环境中测得准确的湿度数据,而且还有响应快、使用湿度范围宽(可在150以下使用)等优点,在实际应用中占有很重要的位置。,烧结型半导瓷湿敏电阻的结构如图所示 1接
11、线柱2隔漏环3RuO2电极 4感湿体5加热丝6底座 7感湿体引线,(1)烧结型湿敏电阻,(2)涂覆膜型Fe3O4湿敏器件,有一种由金属氧化物微粒经过堆积、粘结而成的材料,它也具有较好的感湿特性。用这种材料制做的湿敏器件,一般称为涂覆膜型或瓷粉型湿敏器件。这种湿敏器件有多种品种,其中比较典型且性能较好的是Fe3O4湿敏器件。,Fe3O4感湿膜的整体电阻很高。当水分子透过松散结构的感湿膜而吸附在微粒表面上时,将扩大微粒间的面接触,导致接触电阻的减小;因而这种器件具有负感湿特性。Fe3O4湿敏器件的主要优点是在常温、常湿下性能比较稳定;有较强的抗结露能力;在全湿范围内有相当一致的湿敏特性,而且其工艺
12、简单,价格便宜。其主要缺点是响应缓慢,并有明显的湿滞效应。,三、湿敏传感器的应用,1.自动去湿装置 图8-12中,H为湿敏传感器,Rs为加热电阻丝。在常温常湿情况下调好各电阻值,使V1导通,V2截止。当阴雨等天气使室内环境湿度增大而导致H的阻值下降到某值时,RH与R2并联之阻值小到不足以维持V1导通。由于V1截止而使V2导通,其负载继电器K通电,常开触点闭合,加热电阻丝RS通电加热,驱散湿气。当湿度减小到一定程度时,电路又翻转到初始状态,V1导通,V2截止,常开触点断开,RS断电停止加热。,2.录像机结露报警控制电路 如图所示,该电路由BG1BG4组成。结露时,LED亮(结露信号),并输出控制
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 物性 传感器
链接地址:https://www.31ppt.com/p-5937280.html