五年级下册分数的初步认识.ppt
《五年级下册分数的初步认识.ppt》由会员分享,可在线阅读,更多相关《五年级下册分数的初步认识.ppt(33页珍藏版)》请在三一办公上搜索。
1、教学目标:1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。3.理解和掌握分数的基本性质,会比较分数的大小。4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。5.会进行分数与小数的互化。,(1)教学前一幅插图时,可以先让学生看图说说图上画了什么,教师再做必要的解释,如绳子上打结的一段,表示长度的一个计量单位。也可以出示按图中那样打结的绳子,边演示、边说明测量的结果是3段多,以帮助学生理解图中“剩下的不足一段怎么记?”的问题。
2、然后让学生说说自己的想法。这里,只要理解测量的结果,往往不是整数,需要用分数来表示就行了,可以不展开,找出解决办法。(2)教学后一幅插图时,可以先让学生看图说出两个同学遇到的问题,然后让学生说说可以怎样平均分,把分得的结果填在课本上,并交流。如果有学生提出,这些结果可以用小数来表示,应予以肯定。(3)小结时,可以针对两个实例,指出测量、分物时,可能得不到整数的结果,需要用一种新的数分数表示。所以分数是人类为了适应客观实际需要而产生的。教学时还可以简单说明,分数产生得很早,最初人们只认识一些简单的分数,如一半,三分之一等。像现在这样完善的分数读写法和四则运算,是经过很长的时间才逐步形成的。,教学
3、分数的意义时可以提出问题,先让学生自己举例说明1/4的含义,再看课本上的举例。当然也可以先看课本的举例,再自己补充举例。学生举例时,教师可以适当加以归类引导,使他们举的例子既有一个物体的1/4,又有一些物体的1/4。还可以让学生再举一些3/4的例子。然后,引导学生将课本提供的和自己想到的例子加以概括。可以按课本的描述概括,也可以分三层意思概括:把一个或一些物体看作一个整体,用自然数1表示,叫做单位“1”;把单位“1”平均分成若干份;取这样的一份或几份,用分数表示。引入分数单位时,可以先以346为例,让学生说说整数各个数位上的计数单位。然后指出分数也有计数单位,叫做分数单位。让学生自己阅读课本,
4、复述分数单位的意义并举例说明。这里可以引导学生归纳:分数单位就是把单位“1”平均分成若干份,表示其中一份的数,也就是单位“1”的若干分之一。也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。,(1)教学例1时,可以直接出示例题,也可以先从商是整数的除法引入。如:把6个小蛋糕平均分给3个小朋友,每人分得多少个?让学生用除法计算,然后出示例题。这样比较容易类推出除法算式:13。不论怎样引入,都应引导学生思考:求每人分得多少个,要把1个大蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数1/3来表示。所以131/3。(2)教学例2时,同样可
5、以先引导学生思考怎样列式,把3块月饼平均分给4人,求每人分得多少块,用除法计算。再引导学生思考34等于多少。可以让学生拿3个圆实际分分看。学生可能有不同的操作方法。例如:方法一,先把每个圆剪成4个1/4块,再把12个1/4块平均分给4人,得到每人3个1/4块,然后把3个1/4块拼在一起,得出结果,每人分到3/4块。方法二,按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个1/4块拼在一起,得到每人3/4块。方法三,先把2个圆摞在一起,平均分成2份剪开,剪成4个1/2块,再把1个圆平均分成4份剪开,然后把1/2块和1/4块拼在一起,得出每人分到34块。方法四,操作与推理结合:1
6、块月饼平均分给4人,每人分得1/4块,3块月饼平均分给4人,每人分得3个1/4块,是3/4块。通过操作不仅加深学生对计算结果的理解,而且也锻炼了学生合理地解决实际问题的能力。(3)在上面两个实例的基础上,可以采用课本上小精灵提出的问题:“你发现分数与除法有什么关系?”放手让学生自己概括,然后教师加以总结。也可以启发学生想:当整数除法得不到整数商时,可以用什么数表示?在表示整数除法的商时,用谁作分母?用谁作分子?教师总结学生的回答,写出分数与除法的关系,并用字母表示。这里,应着重使学生明确以下几点:有了分数,就可以解决整数除法有时得不到整数商的问题。当用分数表示整数除法的商时,要用除数作分母,被
7、除数作分子。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。在整数除法中,除数不能是零。在分数中,分母也不能是零。因此,用字母表示时,要注明b不等于0。最后,还要指出,前面讲分数的意义时,把3/4理解为把单位“1”平均分成4份,表示这样3份的数。学了分数与除法的关系,34也可以看作是把“3”平均分成4份,表示这样一份的数。如果有学生提问:整数除法,当商是整数时,可不可以用分数表示?则回答是肯定的。事实上,任何一个整数除以非零整数,商都可以用分数表示。这一点,学了约分和假分数化成整数以后,就更清楚了。至于分数与除法,除了联系,还有没有区别?
8、通常的回答是:除法是一种运算;分数是一种数。但这只是概念上的区别,因为分数不仅可以表示除法的商,它本身也可以看作两个数相除。(4)教学例3时,出示例题后,可以先引导学生联系分数的意义,理解求养鹅的只数是鸭的几分之几,就是求7只是10只的几分之几,就要把鸭的只数看作一个整体,平均分成10份,每份1只,1只是整体的1/10,7只就是整体的7/10。然后引导学生根据分数与除法的关系想:一个分数,其中的分子相当于被除数,分母相当于除数,所以7/10就相当于710,这样求一个数是另一个数的几分之几可以用除法计算。以后解决求一个数是另一个数的几分之几的问题,就可以直接用除法计算。,教学例1时,可以先让学生
9、观察教材第69页上的第一组图形或教师出示的相应教具,写出或说出每个图形所表示的分数,然后比较每个分数的分子与分母的大小,回答提问:“这些分数比1大还是比1小?”并说明理由。比如第一个圆,平均分成了3份,这样的3份也就是一个整圆才表示1,而阴影部分只有1份,当然比1小。其他两个分数也让学生说一说。在这基础上,引导学生概括出真分数的概念及其特征(都小于1)。教师可以指出,我们过去接触的一些分数,大都是真分数。,教学例2时,同样可以先让学生观察教材第69页上的第二组图形的教具,启发学生用分数表示出来。比如左图可以这样提问:把一个圆平均分成几份,表示有这样的几份?那么根据分数的意义该怎样用分数来表示?
10、使学生明确,把一个圆平均分成4份,分母是4,表示这样的4份,分子也是4,写成4/4。中图和右图可以采用同样方法进行教学,只是这里有必要强调每个圆都表示“1”。然后告诉学生,像4/4、7/4、11/5这样的数也是分数。当然也可以让学生观察教材第69页上的第二组图形以及图下的分数,说一说每个分数的含义。再比较这些分数中分子和分母的大小,并想一想:这些分数比1大还是比1小。,(1)教学例3时,可以先出示插图或让学生看课本理解题意:4个同学在吃橙子,其中一个说“我吃了一个半”。由此提出问题,怎样用分数表示一个半?可以让学生独立思考,也可以让他们自己画出示意图,再思考。学生容易想到“一个半”是1+1/2
11、的和,但若没有经过预习,学生很难想到用 表示。因此教师可以告诉学生,1+1/2的和可以写成。然后再让学生说说图中其他几个同学吃了多少个橙子,怎样用分数表示。在此基础上指出:“像,这样的分数叫带分数。”然后认识带分数的整数部分和分数部分,并教学带分数的读法。为了加深学生对带分数的认识,可以再举出一两个带分数,让学生读读,并指出这些带分数的整数部分与分数部分。还可以让学生将带分数与1比较大小,得出带分数都大于1。,(2)教学例4时,教师有必要指出,这里把一个圆看作单位“1”。可以先让学生看图写出假分数:再让学生说出每个假分数的分数单位,它们各有几个这样的分数单位。然后指出:“有时根据需要,要把假分
12、数化成整数或带分数。”怎么化呢?可以让学生自己思考,或组织小组讨论。也可以先让学生观察这三个假分数的分子是不是分母的倍数。得出假分数有两种情况,一种是分子是分母的倍数,如前两个;另一种是分子不是分母的倍数,如第三个。然后思考怎样化。学生很容易看图根据分数的意义直接得出4/41,8/42;也会有学生想到根据分数与除法的关系得出这些结果。教师不妨以8/42为例,启发学生理解两种思考方法的一致性:因为4个1/4是1,而842,所以8个1/4是2,也就是8/4842。掌握了这一方法,就不再需要图示,即使分子比较大时,也能通过除法计算将假分数化成整数或带分数。,1)教学例1前,可以先复习整数除法中商不变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 分数 初步 认识
链接地址:https://www.31ppt.com/p-5913935.html