隐函数和参数方程求导-经济数学-赵树嫄.ppt
《隐函数和参数方程求导-经济数学-赵树嫄.ppt》由会员分享,可在线阅读,更多相关《隐函数和参数方程求导-经济数学-赵树嫄.ppt(24页珍藏版)》请在三一办公上搜索。
1、2023年8月29日星期二,1,第四节 隐函数求导与参数方程求导,一、隐函数的导数,二、由参数方程确定的函数的导数,三、相关变化率,第二章,2023年8月29日星期二,2,显函数:因变量是由其自变量的某个算式来表示.比如:,一、隐函数的导数,定义:,隐函数的显化,问题2:隐函数不易显化或不能显化如何求导?,问题1:隐函数是否可导?,例如,可确定 y 是 x 的函数,但此隐函数不能显化.,2023年8月29日星期二,3,隐函数求导方法:,两边对 x 求导,(含导数 的方程),解,2023年8月29日星期二,4,例2.,解,2023年8月29日星期二,5,例3.求椭圆,在点,处的切线方程.,解:椭
2、圆方程两边对 x 求导,故切线方程为,即,2023年8月29日星期二,6,对数求导法,1.方法:,2.适用范围:,先在 两边取对数,然后利用隐函数的求导方法求出y的导数.,适用于幂指函数及某些用连乘,连除表示的函数.,例如幂指函数:,两端对x求导:,2023年8月29日星期二,7,例3.,解,等式两边取对数得,也可这样求:,2023年8月29日星期二,8,例4.,解,等式两边取对数得,2023年8月29日星期二,9,另例,两边取对数,两边对 x 求导,2023年8月29日星期二,10,二、由参数方程确定的函数的导数,若参数方程,可确定一个 y 与 x 之间的函数,可导,且,则,时,有,时,有,
3、(此时看成 x 是 y 的函数),关系,2023年8月29日星期二,11,若上述参数方程中,二阶可导,且,则由它确定的函数,可求二阶导数.,利用新的参数方程,可得,2023年8月29日星期二,12,?,例4.设,且,求,已知,解:,练习:P111 题8(1),解:,注意:,2023年8月29日星期二,13,例5.抛射体运动轨迹的参数方程为,求抛射体在时刻 t 的运动速度的大小和方向.,解:先求速度大小:,速度的水平分量为,垂直分量为,故抛射体速度大小,再求速度方向,(即轨迹的切线方向):,设 为切线倾角,则,2023年8月29日星期二,14,抛射体轨迹的参数方程,速度的水平分量,垂直分量,达到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 参数 方程 求导 经济 数学 赵树嫄
链接地址:https://www.31ppt.com/p-5886877.html