传感器原理及应用技术课件.ppt
《传感器原理及应用技术课件.ppt》由会员分享,可在线阅读,更多相关《传感器原理及应用技术课件.ppt(47页珍藏版)》请在三一办公上搜索。
1、第1章 传感器的特性,1.1 传感器的组成及分类1.2 传感器的基本特性思考题与习题,1.1 传感器的组成及分类,1.1.1 传感器的组成传感器的作用主要是感受和响应规定的被测量,并按一定规律将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成,并无严格的规定。一般说来,可以把传感器看作由敏感元件(有时又称为预变换器)和变换元件(有时又称为变换器)两部分组成,见图1.1。,图1.1 传感器的一般组成,1.敏感元件在具体实现非电量到电量间的变换时,并非所有的非电量都能利用现有的技术手段直接变换为电量,而必须进行预变换,即先将待测的非电量变为易于转换成电量的另一种非电量。这种能完成预变换
2、的器件称之为敏感元件。2.变换器能将感受到的非电量变换为电量的器件称为变换器。例如,可以将位移量直接变换为电容、电阻及电感的电容变换器、电阻及电感变换器;能直接把温度变换为电势的热电偶变换器。显然,变换器是传感器不可缺少的重要组成部分。,在实际情况中,由于有一些敏感元件直接就可以输出变换后的电信号,而一些传感器又不包括敏感元件在内,故常常无法将敏感元件与变换器严格加以区别。如果把传感器看作一个二端口网络,则其输入信号主要是被测的物理量(如长度、力)等时,必然还会有一些难以避免的干扰信号(如温度、电磁信号)等混入。严格地说,传感器的输出信号可能为上述各种输入信号的复杂函数。就传感器设计来说,希望
3、尽可能做到输出信号仅仅是(或分别是)某一被测信号的确定性单值函数,且最好呈线性关系。对使用者来说,则要选择合适的传感器及相应的电路,保证整个测量设备的输出信号能惟一、正确地反映某一被测量的大小,而对其它干扰信号能加以抑制或对不良影响能设法加以修正。,传感器可以做得很简单,也可以做得很复杂;可以是无源的网络,也可以是有源的系统;可以是带反馈的闭环系统,也可以是不带反馈的开环系统;一般情况下只具有变换的功能,但也可能包含变换后信号的处理及传输电路甚至包括微处理器CPU。因此,传感器的组成将随不同情况而异。1.1.2 传感器的分类传感器的分类方法很多,国内外尚无统一的分类方法。一般按如下几种方法进行
4、分类。1.按输入被测量分类这种方法是根据输入物理量的性质进行分类。表1.1给出了传感器输入的基本被测量和由此派生的其它量。,表1.1 传感器输入被测量,2.按工作原理分类这种分类方法以传感器的工作原理作为分类依据,见表1.2。,表1.2 传感器按工作原理的分类,3.按输出信号形式分类这种分类方法是根据传感器输出信号的不同来进行分类,见表1.3。,表1.3 传感器按输出信号形式的分类,1.2 传感器的基本特性,1.2.1 静态特性 指当被测量的各个值处于稳定状态(静态测量)时,传感器的输出值与输入值之间关系的数学表达式、曲线或数表。借助实验的方法确定传感器静态特性的过程称为静态校准。校准得到的静
5、态特性称为校准特性。在校准使用了规范的程序和仪器后,工程上常将获得的校准曲线看作该传感器的实际特性。1.线性度 人们为了标定和数据处理的方便,总是希望传感器的输出与输入关系呈线性,并能准确无误地反映被测量的真值,但实际上这往往是不可能的。假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述:,式中:x输入量;y输出量;a0零位输出;a1传感器的灵敏度,常用k表示;a2,a3,an非线性项的待定常数。式(1.1)即为传感器静态特性的数学模型。该多项式可能有四种情况,如图1.2所示。,(1.1),图1.2 传感器静态特性曲线,设ai0,a00。1)理想线性 这种情况见图1.2(a)。此时
6、a0=a2=a3=an=0 于是 y=a1x(1.2)因为直线上任何点的斜率都相等,所以传感器的灵敏度为 a1=k=常数(1.3),2)输出-输入特性曲线关于原点对称这种情况见图1.2(b)。此时,在原点附近相当范围内曲线基本成线性,式(1.1)只存在奇次项:y=a1x+a3 x3+a5x5+(1.4)3)输出-输入特性曲线不对称这时,式(1.1)中非线性项只是偶次项,即y=a1x+a2x2+a4x4+(1.5)对应曲线如图1.2(c)所示。,4)普遍情况普遍情况下的表达式就是式(1.1),对应的曲线如图1.2(d)所示。当传感器特性出现如图1.2中(b)、(c)、(d)所示的非线性情况时,就
7、必须采取线性化补偿措施。实际运用时,传感器数学模型的建立究竟应取几阶多项式,是一个数据处理问题。建立数学模型的古典方法是分析法。该法太复杂,有时甚至难以进行。利用校准数据来建立数学模型,是目前普遍采用的一种方法,它很受人们重视,并得到了发展。,传感器的静态特性就是在静态标准条件下,利用校准数据确立的。静态标准条件是指没有加速度、振动和冲击(除非这些参数本身就是被测物理量),环境温度一般为室温205,相对温度不大于85%,大气压力为0.1 MPa的情况。在这样的标准工作状态下,利用一定等级的校准设备,对传感器进行往复循环测试,得到的输出-输入数据一般用表格列出或画成曲线。通常,测出的输出-输入校
8、准曲线与某一选定拟合直线不吻合的程度,称之为传感器的“非线性误差”,或称为“线性度”.用相对误差表示其大小,即传感器的正、反行程平均校准曲线与拟合直线之间的最大偏差绝对值对满量程(F.S.)输出之比(%):|(yL)max L=100%yF.S,式中:L非线性误差(线性度);|(yL)max|输出平均值与拟合直线间的最大偏差绝对值;yF.S 满量程输出。F.S.是英文full scale(满量程)的缩写。满量程输出用测量上限标称值yH与测量下限标称值yL之差的绝对值表示,即 yF.S.=|yH-yL|显而易见,非线性误差的大小是以一定的拟合直线作为基准直线而算出来的。基准直线不同,得出的线性度
9、也不同。传感器在实际校准时所得的校准数据,总包括各种误差在内。所以,一般并不要求拟合直线必须通过所有的测试点,而只要找到一条能反映校准数据的趋势同时又使误差绝对值为最小的直线就行。,需要注意的是,由于采用的拟合直线即理论直线不同,线性度的结果就有差异。因此,即使在同一条件下对同一传感器作校准实验时,得出的非线性误差L也就不一样,因而在给出线性度时,必须说明其所依据的拟合直线。一般而言,这些拟合直线包括理论直线、端点连线、最小二乘拟合直线、最佳直线等。与之对应的有理论线性度、端点连线线性度、最小二乘线性度、独立线性度等。(1)理论直线。如图1.3(a)所示,理论直线以传感器的理论特性直线(图示对
10、角线)作为拟合直线,它与实际测试值无关。其优点是简单、方便,但通常(yL)max很大。,图1.3 几种不同的拟合直线(a)理论直线;(b)端点连线;,(2)端点连线。如图1.3(b)所示,它是以传感器校准曲线两端点间的连线作为拟合直线。其方程式为y=b+kx式中b和k分别为截距和斜率。这种方法方便、直观,但(yL)max也很大。(3)最小二乘拟合直线。这种方法按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。如图1.3(c)所示,若用y=kx+b表示最小二乘拟合直线,式中的系数b和k可根据下述分析求得。设实际校准测试点有n个,则第i个校准数据yi与拟合直线上相应值之间的残
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 原理 应用技术 课件
链接地址:https://www.31ppt.com/p-5886576.html