键盘与显示器接口.ppt
《键盘与显示器接口.ppt》由会员分享,可在线阅读,更多相关《键盘与显示器接口.ppt(51页珍藏版)》请在三一办公上搜索。
1、键盘与显示器接口,LED显示器接口技术,LED数码显示器结构与原理 LED数码显示器是由发光二极管显示字段的显示器件。在应用系统中通常使用的是七段LED数码显示器。这种显示块有共阴极与共阳极两种,如下图所示。,使用LED显示器时,要注意区分共阴极和共阳极两种不同的接法。为了显示数字或字符,必须对数字或字符进行编码,简称段码。七段数码管加上一个小数点,共计8段。因此为LED显示器提供的段码正好是一个字节。实际使用中,通过单片机向LED显示接口输出不同段码,即可显示相应的数字。,LED数码显示器共阴极和共阳极段码,硬件译码LED显示接口 如图所示为采用硬件译码器的七段LED接口电路,显示器是共阴极
2、的。9368是硬件段译码器,它能自动将输入的16进制数转换成段码输出,在+5V时能输出约30mA的电流点亮显示器的段。7475是4位锁存器,4个数据输入端接到系统数据总线的D3D0。锁存器的选通端E接到地址译码器,若该接口的地址为0088H,执行以下指令即可在显示器上显示数字“0”。MOV DPTR,0088H MOV A,00H MOVX DPTR,A,软件译码LED显示接口,软件译码动态扫描显示接口如下图,根据要显示的字符查段码表取得相应的段码并输出到LED显示器,采用逐位扫描的方法控制哪一位LED被点亮。,动态扫描汇编语言驱动程序,START:MOV DPTR,#TABLE;DPTR指向
3、段码表首地址MOV R7,#07FH;设置动态显示扫描初值S1:MOVA,#00H MOVCA,A+DPTR;查表取得段码 CJNEA,#01H,S2;判断段码是否为结束符SJMPSTARTS2:MOV B,A;段码送B保存MOVA,R7RL A;显示位扫描值左移1位MOV P3,A;显示位扫描值送P3口MOV R7,AMOVP0,B;显示段码送P0显示LCALLDELAY;延时INCDPTRSJMPS1DELAY:MOV R5,#80;延时子程序D2:DJNZ R5,D2RET TABLE:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H;段码表DB01H;结束符,串行接
4、口LED驱动器MAX7219,MAX7219是MAXIM公司生产的一种串行接口方式7段共阴极LED显示驱动器,其片内包含有一个BCD码到B码的译码器、多路复用扫描电路、字段和字位驱动器以及存储每个数字的88 RAM,每位数字都可以被寻址和更新,允许对每一位数字选择B码译码或不译码。采用三线串行方式与单片机接口,电路十分简单,只需要一个10k左右的外接电阻来设置所有LED的段电流。,MAX7219采用串行数据传输方式,由16位数据包发送到DIN引脚的串行数据在每个CLK的上升沿被移入到内部16位移位寄存器中,然后在LOAD的上升沿将数据锁存到数字或控制寄存器中。LOAD信号必须在第16个时钟上升
5、沿同时或之后,但在下一个时钟上升沿之前变高,否则将会丢失数据。DIN端的数据通过移位寄存器传送,并在16.5个时钟周期后出现在DOUT端。DOUT端的数据在CLK的下降沿输出。串行数据以16位为一帧,其中D15D12可以任意,D11D8为内部寄存器地 址,D7D0为寄存器数据,工作时序如下:,MAX7219的内部寄存器及其地址,8051单片机与MAX7219的接口,8051的P3.5连到MAX7219的DIN端,P3.6连到LOAD端,P3.7连到CLK端,采用软件模拟方式产生所需的工作时序。执行驱动程序后在LED上显示8051字样。,键盘可分为编码式键盘和非编码式键盘。编码键盘能够由硬件自动
6、提供与被按键对应的ASCII码或其它编码。非编码键盘则仅提供行和列的矩阵,其硬件逻辑与按键编码不存在严格的对应关系,而要由所用的程序来确定。任何键盘接口均要解决三个主要问题:1、反弹跳2、串键保护3、按键识别,键盘接口技术,1、反弹跳当按键开关的触点闭合或断开到其稳定,会产生一个短暂的抖动和弹跳,如下图所示,这是机械式开关的一个共同性问题。消除由于键抖动和弹跳产生的干扰可采用硬件方法,也可采用软件延迟的方法。,采用RS触发器实现硬件反弹跳,当键数较多时经常用软件延时的方法来反弹跳,如流程图所示。当检出有键按下后,先执行一个反颤延时20ms的子程序,待前沿弹跳消失后再转入键闭合CLOSE子程序。
7、然后再判断此次按键是否松开,如果没有,则进行等待。若已松开,则又执行一次延时20ms的子程序以消除后沿弹跳的影响,再去检测下次按键的闭合。,2、串键保护 有三种处理串键的技术:两键同时按下、n键同时按下和n键锁定。“两键同时按下”技术是在两个键同时按下时产生保护作用。最简单的办法是当只有一个键按下时才读取键盘的输出,最后仍被按下的键是有效的正确按键。当用软件扫描键盘时常采用这种方法。另一种方法是当第一个按键未松开时,按第二个键不产生选通信号。这种方法常藉助硬件来实现。“n键同时按下”技术或者不理会所有被按下的键,直至只剩下一键按下时为止,或者将所有按键的信息都存入内部缓冲器中,然后逐个处理,这
8、种方法成本较高。“n键锁定”技术只处理一个键,任何其它按下又松开的键不产生任何码。通常第一个被按下或最后一个松开的键产生码。这种方法最简单也最常用。,3、按键识别 决定是否有键被按下,如有则应识别键盘矩阵中被按键对应的编码。编码键盘通过硬件直接提供按键与被按键对应的ASCII码或其它编码。非编码键盘则需要通过编程方式提供按键编码。其优点是结构简单、成本低廉。,非编码键盘接口技术,非编码键盘接口技术主要是如何确定被按键的行、列位置,即键码(值)。按键识别是接口技术的关键问题。常用按键识别方法有行扫描法(Row-Scanning)和线反转法(Line-Reverse)。,典型非编码键盘结构 非编码
9、键盘大都采用按行、列排列的矩阵开关结构,这种结构可以减少硬件和连线。,矩阵键盘接口,行扫描法识别按键 行扫描法是采用步进扫描方式,CPU通过输出口把一个“步进的0”逐行加至键盘的行线上,然后通过输入口检查列线的状态。由行线列线电平状态的组合来确定是否有键按下,并确定被按键所处的行、列位置。,键位与行列线关系表,上表列出了识别按键位置与各行之间的关系。其中,R1、R2、R3、R4表示行,C1、C2、C3、C4表示列。当扫描第一行时,R1=0,若读入的列值C1=0,则表明按键K13被压下,如果C3=0,则表明按键K15被压下。第一行扫描完毕后再扫描第二行,逐行扫描至最后一行为止,即可识别出所有的按
10、键。,线反转法识别按键,线反转法是藉助程控并行接口实现的,比行扫描法的速度快。如图所示为一个44键盘与并行接口的连接。并行接口有一个方向寄存器和一个数据寄存器,方向寄存器规定了接口总线的方向,寄存器的某位置“1”,规定该位口线为输出。寄存器的某位置“0”,规定该位口线为输入。,线反转法的具体操作分两步,第一步:先把控制字0FH置入并行接口的方向寄存器,使4条行线(PB0PB3)作输出,4条列线(PB4-PB7)作输入。然后把控制字F0H写入数据寄存器,PB0PB3将输出“0”到键盘行线。这时若无键按下,则4条列线均为“”;若有某键按下,则该键所在行线的“0”电平通过闭合键使相应的列线变为“0”
11、,并经与非门发出键盘中断请求信号给单片机。图4.6(a)是第2行第1列有键按下的情况。这时PB7PB4线的输入为1011,其中0对应于被按键所在的列。,第二步:使接口总线的方向反转,把控制字F0H写入方向寄存器,使PB0PB3作输入,PB4PB7作输出。这时PB7PB4线的输出为1011,PB3PB0的输入为1011,其中“0”对应于被按键的行。单片机现在读取数据寄存器的完整内容为10111011,其中两个0分别对应于被按键所在的行列位置。根据此位置码到ROM中去查表,就可识别是何键被按下。,单片机通过8155实现的键盘、显示器接口,如图所示为单片机8051与矩阵键盘及LED显示器的一种接口电
12、路,通过编程设定8155的PA口、PB口作为输出口,PC口作为输入口。PA口完成键盘的行扫描输出,同时又对LED显示器作字位扫描,PC口输入键盘列线状态。7407为同相驱动器,75452为反相驱动器。接口电路中采用8031的P2.7作为8155的片选线,P2.0作为8155的IO端口和片内RAM选择线,因此8155的命令寄存器地址为7F00H,PAPC口地址为7F01H7F03H。,按键识别子程序,KEY:MOV DPTR,#7F00H;8155命令口地址 MOV A,#03H;置PA、PB口为输出,MOVX DPTR,A;PC口为输入MOV R4,00H;0键号寄存器R4MOV R2,01H
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 键盘 显示器 接口
链接地址:https://www.31ppt.com/p-5881295.html