部分电生理学的方法.ppt
《部分电生理学的方法.ppt》由会员分享,可在线阅读,更多相关《部分电生理学的方法.ppt(34页珍藏版)》请在三一办公上搜索。
1、第四部分 电生理学的方法,第一章 电生理常用主要仪器 一、阴极射线示波器 示波器是电生理学实验常用的显示设备,它具有频率响应高,显示直观的特点。根据光点暂留时间不同可将示波器分力长余辉、中余辉、短余辉示波器;根据示波管内电子枪的数目可将示波器分为单线示波器、双线示波器。根据生物电的特点,电生理实验室所用的示波器(oscillograph)应为高灵敏度、扫描速度慢(2s/cm-1s/cm)、频率在1MHz以下的。如用数字存贮示波器更好,它能把信号以数字形式存贮起来,随意调出,而且可以长时间显示在荧光屏上以利于分析和照像,它可以把信号数据直接送入通用计算机接口,也可以把存贮数据模拟输出,连接记录器
2、和X-Y记录器描记出生物电位。有关示波器的结构与原理在学习生理学时已介绍此不再赘述。,二、生物电放大器 通常来自记录电极的生物信号很微弱,且混有大量的干扰信号,必须经生物电放大器放大去干扰后才能显示。一般放大器只有一个有效信号输入端,另一端参考电平接地,即所谓单端放大器;辨差放大器(或称差分放大器)有两个有效信号输入端,对异相信号(如生物电信号由一探查电极及一无关电极引导记录,这两个电极所获得的电位不同)进行放大,而对同相信号(如作用在两电极的交流电信号完全相同)则放大很少。生物电放大器都是用辨差放大器。这种放大器有二特点:零点漂移小,即输人电压为零时,输出电压应恒定的等于零。此在直流放大器尤
3、为重要。能有效地抑制共模电压,放大器两个输入端所共有的电压,称为共模电压。好的放大器必须有很强的共模干扰抑制能力。此能力可用共模抑票然虮绮畋缺硎局 生物电放大器的性能好坏将直接影响实验结果的获取,对生物电放大器的基本要求是高输入阻抗(大于2M)、高共模抑制比(CMRR,大于100dB)、高增益(放大倍数大于10万倍)、高稳定性低漂移(小于10V)、合适的通频带(0100kHz)以及低噪声(小于3V)等。,1共模抑制比(CMRR)=Ad/AC,此比愈大愈好(一般为2万,最好达5万)。Ad为差模信号的增益(在双端输入的差动放大器中输入的幅值相同,极性相反的电信号,如生物电信号),Ac为共模信号的增
4、益(在双端输入的差动放大器中输入的幅值相同,极性相同的电信号,如干扰信号);CMRR越大表明放大器抗干扰能力越强。辨差放大器一般都有一平衡调节使电路两侧输出端电压在无信号时趋于零。这种放大器的两个输入端输入信号,是为双边输入,如一端与生物体接触不良或脱落成为单边输入,则共模抑制比降低而出现交流电干扰。2放大倍数(增益)前级放大器一般最大增益约1000-2000左右。配上示波器后级放大器,整个放大倍数应能达到5Ouvcm(记录脑电),如做肌电能达到10-20v/cm则更好。3噪音 输入短路无信号时,因放大器中元件内电子热骚动等因素使放大器仍有一定输出,此乃噪音。放大器的频带宽度愈大则噪音亦愈大。
5、故频宽宜适当加以限制。由于噪音存在,故放大器的放大倍数不可能太大。在记录生物电信号时要注意信噪比,如噪音是最小信号的1/10则好。,4漂移 一般生物电放大器在接通电源后,经半小时应该稳定。交流放大器只有当时间常数超过一秒时,基线漂移才表现显著,漂移以小于10v小时,或小于10V/为好。5频率响应(通频带)放大器只能对一定频率范围内的信号进行均衡放大。超过这范围的信号,放大倍数就会降低,放大器对低频的放大能力下降至对中间频率放大能力的70时的信号频率称放大器的下限频率;放大器对高频的放大能力下降至对中间频率放大能力的70时的信号频率称上限频率。此两频率间所包括的频率为频带宽度,亦即频率响应或称通
6、频带。放大器的通频带是指能被放大器放大的信号的频率范围,由于生物电信号的频率通常低于100kHz,因而生物电放大器的频带范围一般在0(DC,直流)-100kHz,可以通过调节放大器的时间常数和高频滤波来选择合适的通频带。6时间常数 交流放大器(阻容耦合放大器)其下限频率与所用交连的电容与电阻数值有关,也就是与时间常数有关(T=RC),时间常数也称为低频滤波。时间常数小则低频信号衰减大,故一定的时间常数就决定了电路的低频特性。一般放大器时间常数有0.01、0.1、0.3、1秒数挡。也就是说相当于频率为16,1.6,0.5,0.16Hz的低频滤波器。即在该频率处幅度减少30%低频响应f=1/(2时
7、间常数),例如时间常数为0.3,f=1/(20.3)=0.5c/s。若时间常数选择为1秒,则频带低端的频率为0.16Hz,即只有大于0.16Hz的信号才能通过放大器。,7高频滤波 高频滤波指通频带高端的截止频率,将信号中较高频率部分滤掉,而保留其低频部分。如高频滤波选择了1kHz,则只有低于1kHz的信号才能通过放大器;通过选择不同的时间常数和高频滤波,可以得到合适的通频带,即保证被检测的生物电信号不失真通过的最小频带。8低频与高频滤波的运用 观察快速电波时,如肌电可用较小的时间常数使慢波滤掉,则基线平稳,而将高频滤波开至最大(即不要滤掉高频波)。当观察慢波时,则可用高频滤波以滤去快速电波如肌
8、电,注意时间常数不能小,否则将引起失真。,频率范围 电压范围 时间常数 高频滤波 放大灵敏度心电 0.3-200c/s 60V-2mV 2秒 100c/s 0.5-1mV/cm脑电 0.5-70秒 30c/s或70c/s 50V/cm肌电 10-2000c/s 10mV-5mV 秒 不用 20V-1mV/c,三、微电极放大器 上述生物电前级放大器主要是用粗电极记录细胞外电流总和,即场电位。放大器输入阻抗相对较小一般在1-2M,放大器栅流一般为10-9A或更小些。但这种放大器不适用于作微电极实验。主要不同在于后者有一级阴极输出器(或称阴极跟随器,射极跟随器),其特点是:1放大器的输入阻抗很高,可
9、达100KM;2放大器输入电容较小。微电极电阻很大,可与输入电容组成一时间常数很大的高频滤波器。使生物电高频成分受到衰减而严重失真。阴极跟随器输入电容可小至1-2pf;3微电极放大器输入极栅流小,普通放大器输入级的栅流太大,超过所检测细胞的兴奋阈值(10-8-10-9A)可刺激细胞而兴奋。同时由于栅流本身不稳定,微电极与细胞组织之间的外电阻也不很稳定。当栅流通过此电阻时会经常变动产生假信号,栅流应小于110-11A。,四、记录电极与刺激电极 1粗电极(包括电极板等)主要用于:引导心电、脑电、胃肠电、神经干动作电位等生物电;刺激外周神经、中枢核团以及肌肉等其他组织。材料:一般用金属制成,如银、铂
10、、镍、不锈钢、钨等。用金属电极引导引导生物电位和刺激生物组织主要的干扰因素之一是电极的极化作用。当金属的电极放到生物组织上测量生物电时,电极与体液接触界面上就会产生一个电位差,此电位差将干扰生物电的测量,尤其是在引导记录频率缓慢而近于直流的生物电位时,更会使电位降低,造成引导的波形失真。在刺激时,当直流电通过组织,金属电极和组织之间发生了电解过程,它们产生了与刺激电流相反的电动势,此反电动势形成了极化电流,对抗了原来的刺激电流,使刺激电流的强度降低(失真)。在直流电接通的瞬间,即产生极化现象,刺激时间越长,极化现象越显著,刺激的实际电压就越低,造成失真现象越严重。,直流电刺激通过普通金属电极造
11、成极化现象的原因是:阳极上积聚负电荷的阴离子,其结果为阳极被氧气充填,周围液体变酸性:2Cl-+H2O2HCl+(1/2)O2;阴极处聚集了带正电荷的阳离子,并在阴极处Na+与水的OH-离子相结合,其结果为阴极被氢气所充填,周围液体变成碱性:Na+H2ONaOH+(1/2)H2。为了消除极化现象,以便能精确地测定器官或组织在刺激与反应之间量的关系,以至不失真地引导器官或组织的自发和诱发电活动,就必须使用乏极化电极,乏极化电极具有对生物体体液相当稳定的电极电位,如Ag-AgCl电极,记录时在阳极上有Cl-离子聚集。此时阳极向电池供给电子e,而成Ag+离子,具体过程如下:Ag-eAg+,Ag+Cl
12、-AgCl,在阴极上有Na+聚集,AgCl+eAg+Cl-,Cl-+Na+NaCl,这样在阴极处没有氧的薄层形成。在液体和金属之间的界面层实际上仍然被一层氯化银所覆盖,因而不产生极化电流。但AgCl电极释放Ag+对组织有一些毒性,最好要通过盐桥,如用外加浸有生理盐水的滤纸套或通过棉花与组织接触。常用的乏极化电极除了Ag-AgCl电极,还有Zn-ZnSO4电极、Hg-HgCl2电极。,2微电极 用粗电极记录中枢神经系统电位是群体细胞的综合电位,用微电极才能记录到单个细胞或单根纤维的电活动(细胞外记录,主要看频率,细胞内看波形与幅度)。局限的微量刺激也必须用微电极。常用的微电极有玻璃电极,金属电极
13、(详见细胞外、内记录章节)。,五、电刺激的应用 电刺激在电生理实验中应用广泛,不仅在基础研究中而且在临床诸科(如神经科、五官科、心血管科)也常使用。电刺激的优点:1基本参数易于精确控制(如强度、时间、强度-时间变化率等);2组织细胞的生理活动过程中往往都伴有电的变化,故符合生理状态;3电刺激强度不很大时,组织不易损伤组织可反复使用。电刺激波形大致有三种即:正弦波、方波,不对称的尖波(如电针仪输出的)。较常用的是方波,波形简单。易于产生和严格控制,计算刺激量也较容易,陡峭的前沿使刺激比较有效,但单向方波宽太大(超过1ms)或用直流电刺激长时可引起损毁效应。故应尽可能缩短刺激时间和强度。为了避免减
14、少电解作用,可用双向方波,但反相的正波有时可产生阳极阻滞作用或阳极断电兴奋。正弦波对自主神经刺激效应强,几乎很少产生电解作用,每个波的时间周期随频率而改变。,(二)刺激电流强度 随各种实验而有很大不同。影响强度因素:1组织本身的兴奋性:A类神经纤维兴奋性高、刺激强度可很小。如以A的强度为1,B类为A的53.5倍,C类纤维为A类的100倍。2电流作用于组织的时间:刺激强度与电流作用时间成反比关系。3电流密度:电极粗细,被刺激组织离开电极的距离以及电极周围组织液的旁路等都会影响电流密度。用微电极刺激神经与肌肉细胞时,几个微安十几毫伏即足以引起兴奋。用粗电极刺激神经干所需约数伏。通过皮肤刺激需几十伏
15、,几个毫安。通过浴槽中容积导体刺激离体肠肌标本其电压6080伏,电流要十几毫安,这是因为大部分电流经溶液旁路(刺激器输出电压需100V,最大输出电流20mA)。刺激强度可用刺激电极两端的电压或流经组织的电流量来表示。一般电流强度与电压强度是平行增减的。然而只有当组织电阻恒定时,电压才能反映电刺激的生理效应,实际上电刺激的效应取决于通过组织的电流量。,(三)电流作用时间(刺激波宽)确定波宽可根据:1被刺激组织动作电位锋电位的时程。2时值:Ams,B类或Cms,心肌0.5-2ms,平滑肌5-10ms,大脑皮层1-6ms,波宽太短所需电压高刺激效应弱,波宽太长产生电解,损坏组织。兴奋性高,时值短者,
16、波宽可小,反之则大。(四)刺激频率 躯体神经约50-250Hz,内脏神经约2-5Hz,骨骼肌约10-150Hz,心肌及平滑肌0.1-1Hz,大脑皮层20-60Hz,中枢深部组织100Hz以内。各种频率作用于同一组织所起效应亦不一致,进行串刺激时应注意各串刺激彼此相隔时间应容许中枢兴奋或抑制状态消失后再予刺激。,六、电刺激器 刺激器按其输出方式可分为恒压刺激器和恒流刺激器。前者刺激量的大小是以电压表示的,一般用于对刺激定量要求不高或者在实验过程中实验对象的电阻抗变化不大的场合;后者刺激量的大小是以电流表示的,一般用于对刺激定量要求较高或实验过程中实验对象的电阻抗会明显改变的场合。一般常用的电刺激
17、器产生方波。1刺激方式有:单次、连续、串刺激、双次刺激。2刺激参数:强度刺激脉冲的电压或电流幅度表示,波宽单个脉冲的宽度(时程)。3刺激频率(或周期):是相对于连续刺激而言,实际上反映了单位时间刺激次数的多少。目前有两种表示方法:(1)用频率表示10Hz、100Hz等;(2)用周期来表示。两者的关系是:频率(f)=1/周期(T)。4同步脉冲 刺激器可输出一同步脉冲,它表示一次刺激的时间起点,同步脉冲送到整个实验系统中,使各仪器有共同的时间起点,因而保持了时间上的同步。同步脉冲送到示波器,触发一次光点扫描,也可送到另一台刺激器。,5时迟(延迟)是指从同步脉冲到刺激方波出现这段时间差;它使刺激方波
18、或刺激引起的电反应出现的示波器荧光屏上合适的部位,以便观察,两个同步的刺激器可通过调节各自的时迟来改变它们先后次序和时间间隔。6占空系数 是指脉冲的宽度(d)与脉冲周期(p)之百分比,即d/p100,如占空系数为100%即成直流电。输出脉冲的宽度切不可大于或等于周期,脉冲宽度大于周期,频率会减慢,频率调节也失灵。在应用串刺激时,脉冲波宽应比串长的时距小得多,至少不应大于或等于串长的一半。占空比不超过50%,一般不会产生组织损伤。7刺激器的恒流与恒压输出 恒流输出指当组织阻抗(负载)增大或减小时,刺激器输出的电流变动很少。恒压输出指不论组织阻抗(负载)增大或减小,刺激器输出的电压变动很少。前者要
19、求刺激器内阻很高,后者要求刺激内阻很低。这两者中以恒流更为重要,它表示通过组织的电流不变。组织对电刺激的反应大小与电流有关。,8刺激隔离器 这是刺激器的一个重要附件,使输出信号与地隔开,其作用是:(1)减小刺激伪迹,避免伪迹太大而使生物电无法辩识。(2)使刺激电流局限在刺激电极周围,刺激点可精确定位。(3)可以对组织同时进行多点刺激,而不致于引起相互干扰,切断了电流从公共地线传布的可能。(4)消除刺激中的直流成分,避免组织产生极化作用。目前普遍应用的是高频隔离器,简单的刺激隔离器可用铁芯变压器或低周变压器,但波宽大时,刺激波形失真。,七、减小刺激伪迹 刺激器输出和放大器输出具有公共接地线,使得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 部分 生理学 方法
链接地址:https://www.31ppt.com/p-5860947.html