超临界流体萃取.ppt
《超临界流体萃取.ppt》由会员分享,可在线阅读,更多相关《超临界流体萃取.ppt(39页珍藏版)》请在三一办公上搜索。
1、第八章 超临界流体萃取 Supercritical F1uid Extraction,一、概述二、超临界流体萃取原理 三、SFE萃取的基本流程四、SFE萃取的特点五、应用,一、概述,超临界流体萃取(Supercritical F1uid Extraction,SFE),也叫气体萃取(Gas Extraction)、流体萃取(F1uid Extraction)、稠密气体萃取(Dense Gas Extraction)或蒸馏萃取(Destraction).由于萃取中的一个重要因素是压力,有效的溶剂萃取过程也可以在非临界状态下实现,因此广义地称之为压力流体萃取(Pressure Fluid Extr
2、action),它是利用超临界流体(Supercritical Fluid,SCF),即温度和压力略超过或靠近超临界温度(Tc)和临界压力(pc)、介于气体和液体之间的流体,作为萃取剂,从固体或液体中萃取出某种高沸点或热敏性成分,以达到分离和纯化的目的。,超临界流体萃取作为一种分离过程的开发和应用,是基于在超临界状态下溶剂对固体和液体的萃取能力和选择性,比在常温常压条件下可获得极大的提高。,作为一个分离过程,超临界流体萃取介于蒸馏和液液萃取过程之间。蒸馏是物质在流动的气体中,利用不同的蒸气压进行蒸发分离;液液萃取是利用溶质在不同的溶液中溶解能力的差异进行分离;超临界流体萃取是利用临界或超临界状
3、态的流体,依靠被萃取的物质在不同的蒸气压力下所具有的不同化学亲和力和溶解能力进行分离、纯化的单元操作,即此过程同时利用了蒸馏和萃取现象蒸气压和相分离均在起作用。,超临界流体技术自上世纪70年代开始崭露头角,随后便以其环保、高效等显著优势轻松超越传统技术,迅速渗透到萃取分离、石油化工、化学反应工程、材料科学、生物技术、环境工程等诸多领域,并成为这些领域发展的主导之一。,超临界萃取特别适用于食品和医药工业。在美国和欧洲,年生产能力上万吨的茶叶处理和脱咖啡因工厂早已投入生产,啤酒花有效成分、香料等的萃取在不少国家已达到产业化规模。超临界萃取技术在药物、保健品提取等方面的研究和应用也取得了较大进展,美
4、国科学家已开始用超临界CO2从植物中提取抗癌药物,从油子中提取保健品。超临界萃取技术在其它方面也有着广泛的应用前景。如金属与适当配位体生成络合物后,可以溶解于超临界CO2。利用这一性质,可以将一些金属直接从固体和液体中提取出来,不需任何前处理过程,为金属的提取和分离提供了新的途径。同时,人们还可以借助超临界萃取技术,根据聚合物分子量、结构和化学组成对聚合物混合物进行分离。,而超临界流体技术本身也必将对人类科技进步和经济发展产生深远的影响。,今后,随着人们对于超临界流体技术认识和研究的进一步深化,这一新兴技术必将得以更广泛和深入的应用.,要充分利用超临界流体的独特性质,必须了解纯溶剂及其和溶质的
5、混合物在超临界条件下的相平衡行为。现用超临界纯溶剂的相图来表明临界点及其相平衡行为。下图为以纯二氧化碳的密度为第三参数的压力温度图。,1.纯溶剂的行为,二、超临界流体萃取原理,超临界流体:处于临界温度和临界压力之上的物质状态。临界温度Tc:是通过增加压力使气体变为液体的最高温度;临界压力Pc:是通过增加温度使液体变为气体的最高压力。,超临界萃取的实际操作范围以及通过调节压力或温度改变溶剂密度从而改变溶剂萃取能力的操作条件,可以用二氧化碳的对比压力对比密度图加以说明.超临界萃取和超临界色谱的实际操作区域为图中黄色区域,在这一区域里,超临界流体具有极大的可压缩性。溶剂密度可从气体般的密度(0.1)
6、递增至液体般的密度(2.0)。由图可见,在1.0Tr1.2时,等温线在一定密度范围内(r=0.51.5)趋于平坦,即在此区域内微小的压力变化将大大改变超临界流体的密度.另一方面,在压力一定的情况下(如1pr2),提高温度可以大大降低溶剂的密度。如压力在10.3MPa时,温度从37 提高到92 也可以使密度作相应的降低,从而降低其萃取能力,使之与萃取物分离。,超临界流体萃取正是利用了这个特性,形成了新的分离工艺。它是经典萃取工艺的延伸和扩展。,流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而溶质在超临界流体中的溶解度大致上和流体的密度成正比。,当气体处于超临界状态时,成为性
7、质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10100倍;因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。,超临界流体萃取分离过程就是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。,在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加,极性增大,利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制
8、条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。,超临界流体是处在高于其临界点的温度和压力条件下的流体,用它作为萃取剂时,常表现出十几倍、甚至几十倍于通常条件下流体的萃取能力和良好的选择性。除此以外,它所具有的某些传递性质,也使之成为理想的萃取溶剂。,2.超临界流体的性质,不同流体状态时的物理性质,SFE就是利用了SFs独特的物理化学性能,使其较好地渗透到样品基体中,通过分配、扩散等作用,基体中被分离组份在SFs中充分溶解,从而达到萃取的目的。,
9、超临界流体的溶解性溶质在一种溶剂中的溶解度取决于两种分子之间的作用力,这种溶剂溶质之间的相互作用随着分子的靠近而强烈地增加,也就是随着流体相密度的增加而强烈的增加。物质在超临界流体中的溶解度C与超临界流体的密度之间的关系可以用下式表示:lnC=mln+b m和b值与萃取剂及溶质的化学性质有关。选用的超临界流体与被萃取物质的化学性质越相似,溶解能力就越大。在SFE中,压力和温度影响SFs的密度,进而影响SFs溶剂化能力,所以影响SFs效率。,超临界流体显示出在传递性质上的独特性,产生了异常的质量传递性能。如前所述,溶剂的密度对于溶解度而言是一个非常重要的性质。但是,作为传递性质,必须对热和质量传
10、递提供推动力。,超临界流体的传递性,粘度、热传导性和质量扩散度等都对超临界流体特性有很大的影响。超临界流体的密度近似于液相的密度,溶解能力也基本上相同。此外,传递性质值的范围在气体和液体之间,例如在超临界流体中的扩散系数比在液相中要高出l0100倍,但是黏度就比其小10l00倍,这就是说超临界流体是一种低黏度、高扩散系数易流动的相,所以能又快又深地渗透到包含有被萃取物质的固相中去,使扩散传递更加容易并能减少泵送所需的能量。同时,超临界流体能溶于液相,从而降低了与之相平衡的液相粘度和表面张力,并且提高了平衡液相的扩散系数,有利于传质。超临界流体的热传导性大大超过了浓缩气体的热传导性,与液体基本上
11、在同一数量级。这种性能在对流热传递过程中和热与质量传递过程同时发生的情况下有一个比较强的效应。,超临界流体萃取过程能否有效地分离产物或除去杂质,关键是超临界流体萃取中使用的流体必须具有良好的选择性。提高溶剂选择性的基本原则是:操作温度应和超临界流体的临界温度相接近;超临界流体的化学性质应和待分离溶质的化学性质相接近。若两条原则基本符合,效果就较理想,若符合程度降低,效果就会递减。,3.超临界流体的选择,超临界流体的选择是超临界流体萃取的主要关键。应按照分离对象与目的不同,选定超临界流体萃取中使用的溶剂,它可以分为非极性和极性溶剂两类。下表给出了一些常用超临界萃取剂的临界温度和临界压力,表中最后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 临界 流体 萃取

链接地址:https://www.31ppt.com/p-5845108.html