【精品】weka教程数据挖掘英文PPT课件.ppt
《【精品】weka教程数据挖掘英文PPT课件.ppt》由会员分享,可在线阅读,更多相关《【精品】weka教程数据挖掘英文PPT课件.ppt(173页珍藏版)》请在三一办公上搜索。
1、Machine Learning with WEKA,8/26/2023,University of Waikato,2,WEKA:the bird,Copyright:Martin Kramer(mkramerwxs.nl),8/26/2023,University of Waikato,3,WEKA:the software,Machine learning/data mining software written in Java(distributed under the GNU Public License)Used for research,education,and applica
2、tionsComplements“Data Mining”by Witten&FrankMain features:Comprehensive set of data pre-processing tools,learning algorithms and evaluation methodsGraphical user interfaces(incl.data visualization)Environment for comparing learning algorithms,8/26/2023,University of Waikato,4,WEKA:versions,There are
3、 several versions of WEKA:WEKA 3.0:“book version”compatible with description in data mining bookWEKA 3.2:“GUI version”adds graphical user interfaces(book version is command-line only)WEKA 3.3:“development version”with lots of improvementsThis talk is based on the latest snapshot of WEKA 3.3(soon to
4、be WEKA 3.4),8/26/2023,University of Waikato,5,relation heart-disease-simplifiedattribute age numericattribute sex female,maleattribute chest_pain_type typ_angina,asympt,non_anginal,atyp_anginaattribute cholesterol numericattribute exercise_induced_angina no,yesattribute class present,not_presentdat
5、a63,male,typ_angina,233,no,not_present67,male,asympt,286,yes,present67,male,asympt,229,yes,present38,female,non_anginal,?,no,not_present.,WEKA only deals with“flat”files,Flat file inARFF format,8/26/2023,University of Waikato,6,relation heart-disease-simplifiedattribute age numericattribute sex fema
6、le,maleattribute chest_pain_type typ_angina,asympt,non_anginal,atyp_anginaattribute cholesterol numericattribute exercise_induced_angina no,yesattribute class present,not_presentdata63,male,typ_angina,233,no,not_present67,male,asympt,286,yes,present67,male,asympt,229,yes,present38,female,non_anginal
7、,?,no,not_present.,WEKA only deals with“flat”files,numeric attribute,nominal attribute,8/26/2023,University of Waikato,7,8/26/2023,University of Waikato,8,8/26/2023,University of Waikato,9,8/26/2023,University of Waikato,10,Explorer:pre-processing the data,Data can be imported from a file in various
8、 formats:ARFF,CSV,C4.5,binaryData can also be read from a URL or from an SQL database(using JDBC)Pre-processing tools in WEKA are called“filters”WEKA contains filters for:Discretization,normalization,resampling,attribute selection,transforming and combining attributes,8/26/2023,University of Waikato
9、,11,8/26/2023,University of Waikato,12,8/26/2023,University of Waikato,13,8/26/2023,University of Waikato,14,8/26/2023,University of Waikato,15,8/26/2023,University of Waikato,16,8/26/2023,University of Waikato,17,8/26/2023,University of Waikato,18,8/26/2023,University of Waikato,19,8/26/2023,Univer
10、sity of Waikato,20,8/26/2023,University of Waikato,21,8/26/2023,University of Waikato,22,8/26/2023,University of Waikato,23,8/26/2023,University of Waikato,24,8/26/2023,University of Waikato,25,8/26/2023,University of Waikato,26,8/26/2023,University of Waikato,27,8/26/2023,University of Waikato,28,8
11、/26/2023,University of Waikato,29,8/26/2023,University of Waikato,30,8/26/2023,University of Waikato,31,8/26/2023,University of Waikato,32,Explorer:building“classifiers”,Classifiers in WEKA are models for predicting nominal or numeric quantitiesImplemented learning schemes include:Decision trees and
12、 lists,instance-based classifiers,support vector machines,multi-layer perceptrons,logistic regression,Bayes nets,“Meta”-classifiers include:Bagging,boosting,stacking,error-correcting output codes,locally weighted learning,8/26/2023,University of Waikato,33,8/26/2023,University of Waikato,34,8/26/202
13、3,University of Waikato,35,8/26/2023,University of Waikato,36,8/26/2023,University of Waikato,37,8/26/2023,University of Waikato,38,8/26/2023,University of Waikato,39,8/26/2023,University of Waikato,40,8/26/2023,University of Waikato,41,8/26/2023,University of Waikato,42,8/26/2023,University of Waik
14、ato,43,8/26/2023,University of Waikato,44,8/26/2023,University of Waikato,45,8/26/2023,University of Waikato,46,8/26/2023,University of Waikato,47,8/26/2023,University of Waikato,48,8/26/2023,University of Waikato,49,8/26/2023,University of Waikato,50,8/26/2023,University of Waikato,51,8/26/2023,Uni
15、versity of Waikato,52,8/26/2023,University of Waikato,53,8/26/2023,University of Waikato,54,8/26/2023,University of Waikato,55,8/26/2023,University of Waikato,56,8/26/2023,University of Waikato,57,8/26/2023,University of Waikato,58,8/26/2023,University of Waikato,59,8/26/2023,University of Waikato,6
16、0,8/26/2023,University of Waikato,61,8/26/2023,University of Waikato,62,8/26/2023,University of Waikato,63,8/26/2023,University of Waikato,64,8/26/2023,University of Waikato,65,8/26/2023,University of Waikato,66,8/26/2023,University of Waikato,67,8/26/2023,University of Waikato,68,8/26/2023,Universi
17、ty of Waikato,69,8/26/2023,University of Waikato,70,8/26/2023,University of Waikato,71,8/26/2023,University of Waikato,72,8/26/2023,University of Waikato,73,8/26/2023,University of Waikato,74,8/26/2023,University of Waikato,75,8/26/2023,University of Waikato,76,8/26/2023,University of Waikato,77,8/2
18、6/2023,University of Waikato,78,8/26/2023,University of Waikato,79,8/26/2023,University of Waikato,80,8/26/2023,University of Waikato,81,8/26/2023,University of Waikato,82,8/26/2023,University of Waikato,83,8/26/2023,University of Waikato,84,8/26/2023,University of Waikato,85,8/26/2023,University of
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 weka 教程 数据 挖掘 英文 PPT 课件
链接地址:https://www.31ppt.com/p-5841171.html