3.4实际问题与一元一次方程专题复习.ppt
《3.4实际问题与一元一次方程专题复习.ppt》由会员分享,可在线阅读,更多相关《3.4实际问题与一元一次方程专题复习.ppt(41页珍藏版)》请在三一办公上搜索。
1、一元一次方程应用题复习,沿中 马晓斌,应用题的解法很多,以下几种:1)列表法2)图示法3)演示法4)实践法,设未知数的技巧:,1、设直接未知数,即求什么设什么。,2、设间接未知数。,3、设辅助未知数,即“设而不求”,在列方程解决实际问题的过程应 注意哪些问题?,(1)设未知数时,要仔细分析问题中的数量关系,找出题中的已知条件和未知数,一般采用直接 设法,有些问题可用间接设法,要注意未知数 的单位,不要漏写。,(2)找等量关系时,可借助图表分析题中的数 量关系,列出两个代数式,使它们都表示 一个相等或相同的量。,(3)列方程时,要注意方程各项是同类量,单位要一致,方程左右两边应是等量。,(4)解
2、出方程的解后,要验证它的合理性,再解释它的意义,并要注意单位。,一、日历中的方程(找规律解方程),例1 如图某月日历,如果用正方形所圈出4个数的和是76,这4天分别是几号?,问题:日历中阴影中的9个数的和能等于136吗?,如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:,(2)如果剪n次,共剪出多少个小正方形?(3)如果共剪出301个小正方形,则剪了几 次?,4 7 10 13 16,有一些分别标有6,12,18,24,30,36,.的卡片,小明从中任意拿到了
3、相邻的3张卡片,发现这些卡片上的数字的和为342猜猜小明拿到了哪3张卡片?小明能否拿到相邻的3张卡片,使得它们的和为86?说明理由?,(2)周长为一定时,当长和宽相等时面积最大。,例题:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?,例1:甲仓库有存粮120吨,乙仓库有存粮食80吨,现从甲库调部分到乙库,若要求调运后甲库的存粮是乙库的,问应从甲库调多少吨粮食到乙库?,例2:某公司原有职员60名,其中女职员占20%,
4、今年又有几位男职员辞职,公司又补招了3名女职员,女职员的比例提高到25%,问公司离开公司的男职员一共有几人?,甲、乙两个仓库要向A、B两地运送水泥,已知甲仓库可调100吨水泥乙仓库可调水泥80吨,A地需70吨水泥,B地需 110吨水泥,两仓库到A,B两地的路程和运费如下表,(1)设甲仓库运往A地水泥x 吨,试用x的一次式表示总运费W?(2)你能确定当甲、乙两仓库各运往A,B多少吨水泥时,总运费461000元?最省的总运费是多少?,例 我国四大发明之一的黑火药是用硝酸钠、硫磺、木炭三种,原料按15:2:3的比例 配制而成,现要配制这种火药150公斤,则这三种原料各需要多少 公斤?,解:设需要硝酸
5、钠15x公斤,硫磺2x公斤,木炭3x公斤,依题意得:15x+2x+3x=150 x=7.5,15x=157.5=112.5 2x=27.5=15 3x=37.5=22.5,答:硝酸钠应取112.5公斤,硫磺取15公斤,木炭 应取 22.5公斤。,按比例分配应用题,设元是间接设元,一般设其中的一份为x,必要时要求连比,相等关系一般是总量等于部分量的和或找题中的话,也可以是整个题中始终不变的量,按比例分配的应用题的设元和找相等关系 各有什么特点?,一、明确行程问题中三个量的关系,三个基本量关系是:速度时间=路程,分析方法辅助手段:线型图示法,分析方法辅助手段:线型图示法,相遇问题:甲的路程+乙的路
6、程全程,追及问题:(1)同地不同时:,慢者行程先行路程快者路程,(2)同时不同地:,快者路程 慢者行程间隔距离,行程问题,1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?,2)两车同时反向而行,几小时后两车相距270公里?,3)若两车相向而行,慢车先开出1小时,再用多少时间 两车才能相遇?,4)若两车相向而行,快车先开25分钟,快车开了几小时 与慢车相遇?,5)两车同时同向而行(快车在后面),几小时后快车 可以追上慢车?,6)两车同时同向而行(慢车在后面),几小时后两车相 距200公里?,
7、2:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?,解:设水路长为x千米,则公路长为(x+40)千米,等量关系:船行时间车行时间=3小时,答:水路长240千米,公路长为280千米,车行时间为7小时,船行时间为10小时,依题意得:,x+40=280,x=240,3、某连队从驻地出发前往某地执行任务,行军速度是 6千米/小时,18分钟后,驻地接到紧急命令,派遣 通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自
8、行车以14千米/小时的速度沿同一路线追赶 连队,问是否能在规定时间内完成任务?,等量关系:小王所行路程=连队所行路程,答:小王能在指定时间内完成任务。,解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 千米,依题意得:,4 一列客车和一列货车在平行的轨道上同向行驶,客车的长是200米,货车的长是280米,客车的 速度与货车的速度比是5:3,客车赶上货车的 交叉时间是1分钟,求各车的速度;若两车相向 行驶,它们的交叉时间是多少分钟?,解:设客车的速度是5x米/分,则货车的速度是3x米/分。,依题意得:,5x 3x=280+200,x=240,5x=1200,3x=72
9、0,设两车相向行驶的交叉时间为y分钟。,依题意得:,1200y+720y=280+200,y=0.25,5:一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离?,等量关系:顺风时飞机行驶的路程=逆风时飞机行驶的路程。,答:两城之间的距离为3168公里,注:飞行问题也是行程问题。同水流问题一样,飞行问题的等量关系有:顺风飞行速度=飞机本身速度+风速 逆风飞行速度=飞机本身速度风速,5.5(x+24)=6(x-24),解得:x=552,解:静风的速度为x公里/小时,由题意得:,6(x-24)=3168,练习1、甲、乙两人环绕周长是400米的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 实际问题 一元一次方程 专题 复习
链接地址:https://www.31ppt.com/p-5828646.html