《空间向量加减法运算.ppt》由会员分享,可在线阅读,更多相关《空间向量加减法运算.ppt(30页珍藏版)》请在三一办公上搜索。
1、复习回顾:平面向量,1、定义:,既有大小又有方向的量。,2、平面向量的加法、减法与数乘运算,向量加法的三角形法则,3、平面向量的加法、减法与数乘运算律,推广:,(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。,F1,F2,F1=10N,F2=15N,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,C,A,B,
2、D,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。,思考:它们确定的平面是否唯一?,思考:空间任意两个向量是否可能异面?,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,O,A,B,C,空间向量的数乘,空间向量的加减法,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的
3、两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,加法:三角形法则或平行四边形法则,减法:三角形法则,数乘:ka,k为正数,负数,零,加法结合律,成立吗?,加法结合律:,O,A,B,C,O,A,B,C,推广:,(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成
4、一个封闭图形,则它们的和为零向量。,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图),A,B,C,D,平行六面体:平行四边形ABCD平移向量 到A1B1C1D1的轨迹所形成的几何体.,记做ABCD-A1B1C1D1,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图),G,M,始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量,F1,F2,F1=10N,F2=15N,F3=15N,例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。,
5、例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。,例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。,A,B,M,C,G,D,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,M,C,G,D,(2)原式,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,C,D,D,C,B,A,练习2,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,E,A,B,C,D,D,C,B,A,练习2,E,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,A,B,C,D,D,C,B,A,练习2,E,在立方体AC1中,点E是面AC 的中心,求下列各式中的x,y.,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,小结,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,作业,思考题:考虑空间三个向量共面的充要条件.,
链接地址:https://www.31ppt.com/p-5809612.html