真核基因转录调控.ppt
《真核基因转录调控.ppt》由会员分享,可在线阅读,更多相关《真核基因转录调控.ppt(71页珍藏版)》请在三一办公上搜索。
1、第七章 真核生物基因的表达及其调控,第一节 真核生物表达调控特点,真核生物基因的表达调控系统远比原核生物复杂,真核生物和原核生物由于基本生活方式不同所决定基因表达调控上的巨大差别。原核生物的调控系统就是要在一个特定的环境中为细胞创造高速生长的条件,或使细胞在受到损伤时,尽快得到修复,所以,原核生物基因表达的开关经常是通过控制转录的起始来调节的。真核生物(除酵母、藻类和原生动物等单细胞类之外)主要由多细胞组成,每个真核细胞所携带的基因数量及总基因组中蕴藏的遗传信息量都大大高于原核生物。人类细胞单倍体基因组就包含有3109bp总DNA,约为大肠杆菌总DNA的1000倍,是噬菌体总DNA的10万倍左
2、右!,真核基因表达调控的最显著特征是能在特定时间和特定的细胞中激活特定的基因,从而实现预定的、有序的、不可逆转的分化、发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常功能。,真核生物基因调控,根据其性质可分为两大类:,第一类是瞬时调控或称可逆性调控,它相当于原核细胞对环境条件变化所做出的反应,包括某种底物或激素水平升降及细胞周期不同阶段中酶活性和浓度的调节。第二类是发育调控或称不可逆调控,是真核基因调控的精髓部分,它决定了真核细胞生长、分化、发育的全部进程。,真核生物与原核生物的调控差异,一、真核基因表达调控的特点 与原核生物比较它具有一些明显的特点:(一)真核基因表达调控的环节更
3、多 基因表达是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增加了更多的环节和复杂性,转录后的调控占有了更多的分量。,(二)真核基因的转录与染色质的结构变化相关。真核基因组DNA绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中DNA和组蛋白的结构状态都影响转录,至少有以下现象:1.染色质结构影响基因转录染色体结构复杂 由DNA、组蛋白、非组蛋白等大分子组成;DNA顺序重复;基因不连续性,真核生物基因的不连续性和
4、转录后加工是真核基因有别于原核基因的又一重要特征。,2、存在许多基因家族(gene family),来源相同、结构相似、功能相关的基因组成单一的基因簇或称基因家族。同一家族中的成员有时紧密地排列在一起,成为一个基因簇;更多的时候,它们却分散在同一染色体的不同部位,甚至位于不同的染色体上,具有各自不同的表达调控模式。,3、组蛋白的作用:,组蛋白与DNA结合阻止DNA上基因的转录,去除组蛋白基因又能够转录。组蛋白是碱性蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用;染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的
5、阻遏,起到特异性的去阻遏促转录作用。,4.转录活跃的区域也常缺乏核小体的结构。这些都表明核小体结构影响基因转录。5.转录活跃区域对核酸酶作用敏感度增加。活跃进行转录的染色质区域受DNase 消化常出现100200bp的DNA片段,且长短不均一,说明其DNA受组蛋白掩盖的结构有变化,出现了对DNase 高敏感点(hypersensitive site)。这种高敏感点常出现在转录基因的5侧区、3末端或在基因上,多在调控蛋白结合位点的附近,分析该区域核小体的结构发生变化,可能有利于调控蛋白 结合而促进转录。,6.DNA碱基修饰变化:真核DNA中的胞嘧啶约有5%被甲基化为5-甲基胞嘧啶(5methyl
6、cytidine,m5C),而活跃转录的DNA段落中胞嘧啶甲基化程度常较低。这种甲基化最常发生在某些基因5侧区的CG序列中实验表明这段序列甲基化可使其后的基因不能转录,甲基化可能阻碍转录因子与DNA特定部位的结合从而影响转录。如果用基因打靶的方法除去主要的DNA甲基化酶,小鼠的胚胎就不能正常发育而死亡,可见DNA的甲基化对基因表达调控是重要的。由此可见,染色质中的基因转录前先要有一个被激活的过程,但目前对激活机制还缺乏认识。,(三)真核基因表达以正性调控为主:真核RNA聚合酶对启动子的亲和力很低,基本上不依靠自身来起始转录,需要依赖多种激活蛋白的协同作用。真核基因调控中虽然也发现有负性调控元件
7、,但其存在并不普遍;真核基因转录表达的调控蛋白也有起阻遏和激活作用或兼有两种作用者,但总的是以激活蛋白的作用为主。即多数真核基因在没有调控蛋白作用时是不转录的,需要表达时就要有激活的蛋白质来促进转录。因此,真核基因表达以正性调控为主导。,三、真核基因转录水平的调控 真核细胞的三种RNA聚合酶(、和)中,只有RNA聚合酶能转录生成mRNA,以下主要讨论RNA聚合酶的转录调控。(一)顺式作用元件(cis acting elements)真核基因的顺式调控元件是基因周围能与特异转录因子结合而影响转录的DNA序列。其中主要是起正性调控作用的顺式作用元件,包括启动子(promoter)、增强子(enha
8、ncer);近年又发现起负性调控作用的元件静止子(silencer),1.启动子 与原核启动子的含义相同,是指RNA聚合酶结合并启动转录的DNA序列。但真核启动子间不像原核那样有明显共同一致的序列,而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用,不同蛋白质因子又能与不同DNA序列相互作用,不同基因转录起始及其调控所需的蛋白因子也不完全相同,因而不同启动子序列也很不相同,要比原核更复杂、序列也更长。真核启动子一般包括转录起始点及其上游约100200bp序列,包含有若干具有独立功能的DNA序列元件,每个元件约长730bp。最常见的哺乳类RNA聚合酶启动子中的元件
9、序列见下表。,哺乳类RNA聚合酶启动子中的元件序列,启动子中的元件可以分为两种:核心启动子元件(core promoter element)指RNA聚合酶起始转录所必需的最小的DNA序列,包括转录起始点及其上游25/30bp处的TATA盒。核心元件单独起作用时只能确定转录起始位点和产生基础水平的转录。,上游启动子元件(upstream promoter element)包括通常位于70bp附近的CAAT盒和GC盒、以及距转录起始点更远的上游元件。这些元件与相应的蛋白因子结合能提高或改变转录效率。不同基因具有不同的上游启动子元件,其位置也不相同,这使得不同的基因表达分别有不同的调控。,2.增强子
10、 是一种能够提高转录效率的顺式调控元件,最早是在SV40病毒中发现的长约200bp的一段DNA,可使旁侧的基因转录提高100倍,其后在多种真核生物,甚至在原核生物中都发现了增强子。增强子通常占100200bp长度,也和启动子一样由若干组件构成,基本核心组件常为812bp,可以单拷贝或多拷贝串连形式存在。,增强子的作用有以下特点:增强子提高同一条DNA链上基因转录效率,可以远距离作用,通常可距离14kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基因的上游或下游都能起作用。增强子作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。而将启动子倒就不能起作用,可见增强子与启动子是很
11、不相同的。,增强子要有启动子才能发挥作用,没有启动子存在,增强子不能表现活性。但增强子对启动子没有严格的专一性,同一增强子可以影响不同类型启动子的转录。例如当含有增强子的病毒基因组整合入宿主细胞基因组时,能够增强整合区附近宿主某些基因的转录;当增强子随某些染色体段落移位时,也能提高移到的新位置周围基因的转录。使某些癌基因转录表达增强,可能是肿瘤发生的因素之一。,增强子的作用机理虽然还不明确,但与其他顺式调控元件一样,必须与特定的蛋白质因结合后才能发挥增强转录的作用。增强子一般具有组织或细胞特异性,许多增强子只在某些细胞或组织中表现活性,是由这些细胞或组织中具有的特异性蛋白质因子所决定的。,增强
12、子可能有如下3种作用机制:影响模板附近的DNA双螺旋结构,导致DNA双螺旋弯折或在反式因子的参与下,以蛋白质之间的相互作用为媒介形成增强子与启动子之间“成环”连接,活化基因转录;将模板固定在细胞核内特定位置,如连接在核基质上,有利于DNA拓扑异构酶改变DNA双螺旋结构的张力,促进RNA聚合酶II在DNA链上的结合和滑动;增强子区可以作为反式作用因子或RNA聚合酶II进入染色质结构的“入口”。,3.静止子 最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的转录和重排中证实这种负调控顺式元件的存在。目前对这种在基因转录降低或关闭中起作用的序列研究还不多,但从已有的例子看到:静止子的作用可不受序列
13、方向的影响,也能远距离发挥作用,并可对异源基因的表达起作用。,第二节 真核生物DNA水平上的基因表达调控,一、真核生物DNA水平上的基因表达调控特点,分子生物学的最新研究表明,在个体发育过程中,用来合成RNA的DNA模板也会发生规律性变化,从而控制基因表达和生物体的发育。高度重复基因的形成通常与个体分化阶段DNA的某些变化有关。例如,一个成熟的红细胞能产生大量的可翻译出成熟珠蛋白的mRNA,而其前体细胞却不产生珠蛋白。许多情况下,这种变化是由于基因本身或它的拷贝数发生了永久性变化。,这种DNA水平的调控是真核生物发育调控的一种形式,它包括了基因丢失、扩增、重排和移位等方式,通过这些方式可以消除
14、或变换某些基因并改变它们的活性。这些调控方式与转录及翻译水平的调控是不同的,因为它使基因组发生了改变。,二、“开放”型活性染色质(active chromatin)结构对转录的影响,真核基因的活跃转录是在常染色质上进行的。转录发生之前,染色质常常会在特定的区域被解旋松弛,形成自由DNA。这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化等,这些变化可导致结构基因暴露,促进转录因子与启动区DNA的结合,诱发基因转录。,用DNA酶I处理各种组织的染色质时,发现处于活跃状态的基因比非活跃状态的DNA更容易被DNA酶I所降解。鸡成红细胞(erythroblast)染色质中,-血红蛋白基因
15、比卵清蛋白基因更容易被DNA酶I切割降解。鸡输卵管细胞的染色质中被DNA酶I优先降解的是卵清蛋白基因,而不是-血红蛋白基因。,存在于“灯刷型”染色体(lamp brush)上的环形结构可能与基因的活性转录有关。“灯刷型”染色体只有在两栖类动物卵细胞发生减数分裂时才能被观察到,它是染色体充分伸展时的一种形态。高倍电镜下观察发现,灯刷型染色体上存在许多突起的“泡”状或“环”状结构,有时还能看到RNP沿着这些突起结构移动,表明这些DNA正在被RNA聚合酶所转录。,三、基因扩增,基因扩增是指某些基因的拷贝数专一性大量增加的现象,它使细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一
16、种方式。,两栖类和昆虫卵母细胞rRNA基因的扩增非洲爪蟾的染色体上有约450拷贝编码18Sr RNA和28S rRNA的DNA,在卵母细胞中它们的拷贝数扩大了1000倍。一旦卵母细胞成熟,多余的rDNA就没有用了,将被逐渐降解。受精之后,染色体DNA开始复制,并通过有丝分裂的方式,不断扩大细胞群体。在此期间,多余的rDNA继续被降解,直到分裂产生几百个细胞时,rDNA的过剩现象就不复存在了。,四、基因重排,将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。真核生物最典型的例子是免疫球蛋白在成熟过程中的重排以及酵母的交配型转变。,V、C和J基因片段在胚胎细胞中相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基因 转录 调控
链接地址:https://www.31ppt.com/p-5804339.html