直方图及工序能力分析.ppt
《直方图及工序能力分析.ppt》由会员分享,可在线阅读,更多相关《直方图及工序能力分析.ppt(58页珍藏版)》请在三一办公上搜索。
1、实际分布-直方图,直方图的概念直方图的作图步骤直方图常见类型分析直方图 VS.规格的比较分析直方图使用要点,Nov,20,2005,zhong xin,2,直方图的概念,直方图(Histogram):直方图:SPC七个常用品质管理工具之一.是通过对数据加工整理,从而分析和掌握数据的分布状况和估算工序能力的一种方法。从总体中随机抽取样本,整理从样本中获得的数据,以矩形的形式得到的频率分布图形矩形底是单元长度矩形面积与频率成正比。作用:了解生产过程的状态及质量特性值分布的情况判断工序过程能否滿足质量要求显示各种数值出现的相对频率,揭示数据的中心、散布及形状,快速阐明数据的潜在分布为预测过程提供有用
2、信息,Nov,20,2005,zhong xin,3,数据间隔-组距 h组距内的工件数-频数 nn/N-频率(N为样本容量),-频率密度或分布密度以组距 h为横坐标,以 n 或 g 为纵坐标做图,即可得到实际分布图直方图。作直方图三步骤:确定样本容量N及实测数据确定组数 k、组距 h 和组界画直方图及计算分析,直方图的作图步骤,Nov,20,2005,zhong xin,4,一般样本容量N应在50个以上,较容易显示出整体数据分布的情况。,确定样本容量N及实测数据,Nov,20,2005,zhong xin,5,确定组数 k、组距 h 和组界,适当分组(k)组数太少,会掩盖组內的变化情况组数太多
3、,会造影响数据分布的明显性,难以看清分布的状况组数与样本容量 N 有关,可按下表推荐值,或按式 k=1+3.31*lgN 确定,本例取k=7。组距(h)最大值 Xmax=21um,最小值 Xmin=11.5um组距 h=(Xmax-Xmin)/k=(21-11.5)/7=1.36um圆整为 h=1.5um(按测量量具最小分辨值的整数倍进行圆整,本例量具最小分辨值为0.5um)组界各组组界最好选在测量数据最后一位尾数的1/2处,以免数据落在组界上,如测量值尾数为0.5m,组界应取在0.25um上。各组组界为 Xmin+(j-1)h h/2 各组的中值为 Xmin+(j-1)h(j=1,2,3,k
4、)统计频数、频率n/N和分布密度g,Nov,20,2005,zhong xin,6,根据表中有关数据画出直方图用分布密度作纵坐标有两个好处,可避免因样本容量和组距不同而使分布图形状不同每个小矩形面积恰好等于该组距内的工件出现的频率计算出样本均值Xbar和标准差s。Xbar表示样本中心,s反映样本分散的程度。分析直方图类型,画规格线,分析工序状态.,画直方图及计算分析,MinitabGraph Histogram,Nov,20,2005,zhong xin,7,直方图常见类型分析1,Nov,20,2005,zhong xin,8,直方图常见类型分析2,Nov,20,2005,zhong xin,
5、9,直方图 VS.规格的比较分析1,Nov,20,2005,zhong xin,10,直方图 VS.规格的比较分析2,Nov,20,2005,zhong xin,11,有规格线的直方图可用来比较过程与要求。此时应确认直方图具有合适的比例。直方图不应该单独使用。通常在它之前先构造一张链图或控制图。因为直方图中的数据不是按时间顺序给出的,经常掩盖了失控的事实评价直方图的模式以确定是否能够检测到任何形式的变化。比较不同时间段内的直方图。观察直方图从一个时间段到下一个时间段的模式变化,对寻找过程改进的方法非常有用。根据数据来源的不同,分别绘制直方图,对数据分层。例如,对描述金属棒直径的直方图来说,可单
6、独作由不同供应商的原材料制造的直径直方图,或由不同操作工或机器生产的棒径的直方图。有时,这可能会揭示控制图都不能检测到的事情。,直方图使用要点,理论分布,正态分布及其性质非正态分布正态性判定非正态分布数据处理,Nov,20,2005,zhong xin,13,正态分布,概率论己经证明,相互独立的大量微小随机变量,其总和的分布服从正态分布。大量的试验表明,在一次调整好的机床上,连续加工一批工件,若无变值系统误差的影响,误差是由一些相互独立的随机因素引起的,这些因素中又无明显优势者,其参数是服从正态分布的。正态分布的概率分布密度函数表达式为 式中 g(x)-分布的概率密度-总体均值-总体标准差(均
7、方差)正态分布曲线即高斯曲线如图所示,Excel function=average()=stdevp(),Nov,20,2005,zhong xin,14,正态分布的性质1,正态分布曲线有以下几个主要特点曲线呈钟形,对称于平均值,即g(+a)=g(-a)在不变的情况下,变化只能影响分布曲线的位置而不影响分布曲线的形状和分散范围,的变化是由常值系统误差引起的;若不变而变化,曲线的位置不变,但形状和分散的范围发生变化,值对正态分布的影响,Nov,20,2005,zhong xin,15,正态分布的性质2,正态分布曲线有以下几个主要特点(续)当x时,g(x)0,即g(x)以x轴为渐近线;在x=时,g
8、(x)有最大值,即 在x=处,曲线有二拐点,在二点之间曲线向上凸,在二点之外曲线下凹 为 区间的面积,等于该区间的概率,=0,=1 的正态分布为标准正态分布。任何不同的和的正态分布,都可以通过令 z=(x-)/进行坐标变换变成标准正态分布标准正态分布从 0 到 z 区间的概率,即该区间内曲线与横坐标所包含的面积。不同 z 值的(z),可查表求得,Nov,20,2005,zhong xin,16,正态分布的性质3,当 x=3()时,2(3)=2*0.49865=99.73%,即只有0.27%的概率落在该范围之外,可忽略不计,因此一般取正态分布的分散范围为 3(6),Nov,20,2005,zho
9、ng xin,17,正态分布的性质4,如果加工后工件参数服从正态分布,就可以利用正态分布的一些特点来分析加工误差。由于正态分布的和是求不出来的,所以一般通过它的随机样本的均值 xbar 和标准差 s 来估计,即,Excel functionxbar=average()s=stdev(),Nov,20,2005,zhong xin,18,非正态分布1,工件加工后其参数服从正态分布是有条件的,并非所有情况都服从正态分布。如在加工过程中存在较明显的变值系统误差将两次调整下加工的工件混在一起,其参数分布将呈双峰形(a)如砂轮或刀具磨损显著和热平衡前的刀具热变形等,会形成平顶分布(b)和不对称分布加工轴
10、时偏向左,加工孔时偏向右(c)用试切法加工轴和孔时,操作者主观上存在着宁可返修也不报废的倾向性,也往往出现不对称分布,加工轴时偏向右,加工孔时偏向左工件的对称度、锥度、平行度、垂直度等误差是没有负值的。尽管其仍服从正态分布,由于其负值部分叠加到正值部分,就会出现(d)所示的正值分布(差数模分布)其他像径向跳动、端面跳动等误差,一般不考虑正负号其分布亦为正值分布(图(e),(瑞利分布)如寿命,故障率等正态分布的特性值也有可能因数据收集上的问题得到非正态分布结果。因工序不稳定、组内变动混乱、工序外部原因引起组间变动、数据输入错误等,Nov,20,2005,zhong xin,19,非正态分布2,N
11、ov,20,2005,zhong xin,20,非正态分布3,非正态分布的分散范围,不再是6,而是1/K*6。K称为相对分布系数,表示所研究的数据分布的不同分散性质,即分布曲线的不同形状。如果以正态分布曲线作比较依据(即正态曲线的K=l),各种不同分布的K值可参考下表。表中的为相对不对称系数,Nov,20,2005,zhong xin,21,正态性判定,确定数据是否服从正态分布的过程直方图:绘制一个直方图。如果直方图和钟形相差很大,则拒绝正态性离群数:找出离群数,如果有离群数,则可能拒绝正态性只有一个离群数,可能是一个错误,或是偶然变异的结果。但是要仔细,因为即使只有一个离群数,也能对结果产生
12、很大的影响.当识别其为一个错误时,应对其进行修正或删除.但有些不是错误.考察数据时,可通过对包含离群数和不包含离群数的数据的分析来研究离群数的影响正态分位数图:过程略,Nov,20,2005,zhong xin,22,正态性判定,用 Minitab 的 Normality Test 功能Stat Basic Statistics Normality TestIn Variables,enter the columns containing the measurement data.If you like,use either of the dialog box options,then cli
13、ck OK,Nov,20,2005,zhong xin,23,非正态分布数据处理,SPC,6-Sigma 等使用的统计工具一般是以数据正态分布为基础的。若参数远离正态分布,则将上述计算方法所得结果用于工序分析将不能合理的反映工序的真实情况。若数据呈非正态分布,可先把数据转换为正态分布,或者用威布尔分布模型,可得更确切结果。威布尔分布包括指数分布和瑞利分布。使用“Box-Cox transformation”,数据必须为正值。处理方法:收集数据后,用Normality Test检验是否正态分布如果不是正态分布数据转换为正态分布(Box cox变换等)否则,利用其Data特性适合分布,统计性解释。
14、,Nov,20,2005,zhong xin,24,非正态分布数据处理,若参数不符合正态分布,则将上述计算方法所得结果用于工序分析不是很合理。作工序分析时,若数据呈非正态分布,可先把数据转换为正态分布、或者用威布尔分布模型,可得更确切结果。,分布图在工序分析中的应用,判别加工误差的性质确定工序能力估算不合格率,判别加工误差的性质,Nov,20,2005,zhong xin,27,判别加工误差的性质,在工件的加工过程中,如果没有变值系统误差,只有随机误差时,其参数分布应该服从正态分布。如果实际分布与正态分布出入很大,可根据其实际分布形状初步判断变值系统误差是什么类型。常值系统误差可以根据分布的位
15、置相对公差带位置来判断。=参照直方图及正态性判定部分。,评估工序能力,Nov,20,2005,zhong xin,29,预测工序与规格要求的符合程度。帮助产品设计开发人员选择或修改工序,防止设计与制造脱节。辅助设立工序控制的合适抽样区间。新机器或旧机器维修时的评估。不同供应商质量评比。当不同工序间相关时,可以提供工序规划的参考。降低工序的变异性。分辨操作人员的技能。等等,工序能力分析的用途,Nov,20,2005,zhong xin,30,工序能力,工序能力:某工序处于控制状态(稳定状态)下所能达到的加工要求的能力。可用该工序参数分散范围来表示其工艺能力,对于正态分布(或近似正态分布),其分散
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直方图 工序 能力 分析
链接地址:https://www.31ppt.com/p-5802580.html